当前位置: 首页 > 教学资源 > 教学设计

有理数的乘法教学设计(整理6篇)

作者: | 发布时间:2023-01-09 11:20:41 收藏本文 下载本文

大文斗范文网会员为你整理了“有理数的乘法教学设计”6篇范文,希望对你有参考作用。

篇1:有理数乘法教学设计

有理数乘法教学设计

设计理念

1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

2、过程与方法:培养学生观察、归纳、概括及运算能力。

3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点有理数乘法的.运算。

难点有理数乘法中的符号法则。

方法合作交流课型

教学过程

教学环节教学内容

一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?

(负数问题,符号的确定)

篇2:有理数的乘法教学设计

【教学目标】

(一)知识技能

1.使学生掌握多个有理数相乘的积的符号法则;

2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;

(二)过程方法

在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。培养学生观察、归纳、概括能力及运算能力.

(三)情感态度

通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。培养学生的观察和分析能力,渗透转化的教学思想。

教学重点

乘法的符号法则和乘法的运算律.

教学难点

几个有理数相乘的积的符号的确定.

【复习引入】

1.有理数乘法法则是什么?

2.计算(五分钟训练):

(1)(-2)3; (2)(-2)(-3); (3)4(-1.5); (4)(-5)(-2.4);

(5)-23(-4); (6) 970(-6);

(7)1234(-5); (8)123(-4)(-5);

(9)12(-3)(-4)(-5); (10)1(-2)(-3)(-4)(-5);

(11)(-1)(-2)(-3)(-4)(-5).

【教学过程】

1.几个有理数相乘的积的符号法则

引导学生观察上面各题的计算结果,找一找积的符号与什么有关?

(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.

是不是规律?再做几题试试:

(1)3 (-5); (2)3(-5)(-2); (3)3(-5)(-2)(-4);

(4)3(-5)(-2)(-4)(-3);(5)3(-5)(-2)(-4)(-3)(-6).

同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.

再看两题:

(1)(-2)(-3)0(-4); (2)20(-3)(-4).

结果都是0.

引导学生由以上计算归纳出几个有理数相乘时积的符号法则:

几个不等于0的`数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

几个有理数相乘,有一个因数为0,积就为0.

说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.

(2)第一个因数是负数时,可省略括号

例1 计算:

2.乘法运算律

在做练习时我们看到如果像小学一样能利用乘法的交换律和结合律

计算:

(1)5(-6); (2)(-6)5;

(3)[3(-4)](-5); (4)3[(-4)(-5)];

由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,

(1)乘法交换律

文字叙述:两个数相乘,交换因数的位置,积不变.

代数式表达:ab=ba.

(2)乘法结合律

文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.

代数式表达:(ab)c=a(bc).

例2,用简便方法计算:(1)(-5)89.2(-2)

(2)(-8)(-7.2)(-2.5)

解:(1)原式=5289.2……交换因数位置,决定积的符号

=892………………按顺序依次运算

(2)原式=-(82.5)(7.2 )……交换因数位置,决定积的符号

=-60………………按顺序依次运算

【课堂作业】

1.确定积的符号:

积的符号 ;

积的符号 ;

积的符号 。

2完成下面填空:

(1)(-10)( ) 0.16 =_______

(2)(-10)(- )(-0.1) 6 =________

(3)(-10)(- )(-0.1)(-6)=________

(4)(-5)(- ) 3 (-2) 2=________

(5)(-5)(-8.1) 3.140=________

3.计算

(1)8+(-0.5)(-8) (2)(-3) (- )(- )

(3)(- ) 50 (- ) (5) (-6)(+37)(- )(- )

4.计算:(1)(-4)(-7)(-25) (2)(- )8(- )

(3)(-0.5)(-1) (-8) (4)(-5)-(-5) (-4).

(5)(-3)(7)-3 (-6) (6)(-1)(-7)+6(-1)

(7)1-(-1)(-1)-(1)0(-1)

参考答案:

1、-,+,-

2、(1) -2 (2)-2 (3) 2 (4)-30 (5) 0

3、(1)11 (2) (3)0 (4) -5

4、(1)-700 (2) (3)-1 (4)

(5)-378 (6)4 (7)0

【教学反思】

有理数乘法的教学,是教学中的难点。学生也能很快融会贯通,只是计算中还会存在着一些问题,练习过程中要一一指正,并提出要求,让学生在练习中自己总结经验,牢记结论,做到在简单的运算中不失分。这节课主要针对刚迈人初中阶段的学生年龄特点和心理特征,以及他们现有的认知水平,采用启发式,小组合作、尝试练习等教学方法,让尽可能多的学生自觉参与到学习活动中来.

篇3:有理数的乘法的教学设计

一、学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的`学习气氛。

三、教学目标

1、知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、教学过程

1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

a. 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

b. -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

c. 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

d. (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是人仍在原处。

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做 P76 练习1(1)(3),教师评析。

(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

4、讨论对比,使学生知识系统化。

篇4:数学有理数乘法教学设计

人教版数学有理数乘法教学设计

设计理念

1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的'运算技能。

3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标

1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。

2.使学生掌握多个有理数相乘的积的符号法则。

过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。

情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点乘法的符号法则和乘法的运算律。

难点积的符号的确定。

教学过程

一、复习引入;

观察并计算

①(-2)3456

②(-2)(-3)456

③(-2)(-3)(-4)56

④(-2)(-3)(-4)(-5)6

⑤(-2)(-3)(-4)(-5)(-6)

二、自主学习探索:

1.以上几个式子有何区别与联系?

2.你认为多个数相乘先干什么?

3.你能总结出什么规律?

篇5:有理数的乘法的教案设计

有理数的乘法的教案设计

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的'方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

篇6:新课标七年级数学上册《有理数的乘法》教学设计

新课标人教版七年级数学上册《有理数的乘法》教学设计

一、教学目标

1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。

2、能力目标:通过推导两个有理数相乘法则的过程,培养归纳总结的能力,提高由特殊到一般的能力

3、情感目标:通过小组合作,培养与他人合作的精神

二、教学重点:经历由几组算式推导有理数乘法的法则的过程

教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。

三、课前准备:

1、复习小学的乘法法则

2、出几道小学里已经做过的两数相乘的题目,并计算。

四、教学过程:

(一)创设情境,引入新知

问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)

预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。

(二)观察归纳,学习法则(设计说明:法则的得出分两部分)

第一部分分类探究(说明:3组探究重点是探究1)

探究1(师生共同活动)

问题1、观察下面熟识的算式,你能发现什么规律?

3×3=9

3×2=6

3×1=3

3×0=0

预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。

这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。

问题2、根据这个规律,你能填写下面的结论吗?

3×(-1)=

3×(-2)=

3×(-3)=

问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。

问题4、以上两组数相乘属于正数乘正数、正数乘负数,你能类比加法法则,从符号与绝对值两方面再来观察他们存在什么规律吗?

归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。

阶段性学习方法小结:回想探究1的结论,我们是怎样一步步得到的?

(让学生充分发表见解,教师适当引导,得出主要环节:观察-猜想-归纳)

(说明:设计意图有两个,一是初一学生学法意识的形成,二是为探究2,3的.学习做好引导)

探究2(小组讨论)

根据刚才得到的规律,你能得出下面的结果吗?能据此总结出规律吗?

3×3=9

2×3=6

1×3=3

0×3=0

(-1)×3=

(-2)×3=

(-3)×3=

(选一组代表上讲台分析,得出结论)

归纳小结:

(负数乘正数,结果为负,绝对值相乘)

探究3(同桌交流)、

利用上面的规律填空,并说出其中的规律。

(-3)×3=

(-3)×2=

(-3)×1=

(-3)×0=

(-3)×(-1)=

(-3)×(-2)=

(-3)×(-3)=

由学生总结得出:负数乘负数,结果为正,绝对值相乘。

第二部分归纳总结、

问题1:总结上面所有的情况,你能试着说出有理数乘法的法则吗?

在师生共同交流下,得出有理数乘法法则:

两数相乘,同号得正,异号得负,再把绝对值相乘。任何数与0相乘,都得0。

问题2:你认为根据有理数乘法法则进行有理数乘法运算时,应按照怎样的步骤进行运算?可类比加法的运算方法。

(说明:向学生渗透分类讨论及类比思想,再次形成学法体系)

(三)、例题示范,学会应用

例1:计算(1)(-3)×9=(2)8×(-1)(3)(-3)×(-4)(4)6×0

例2:用正数、负数表示气温的变化,上升为正,下降为负。登山队攀登高山,每登高1千米,气温变化量为-6℃,攀登3千米后,气温有什么变化?

五、归纳与总结:说说这节课你有什么收获?你还有什么问题存在?

六、作业:课本练习题1、2、3

板书设计

有理数乘法教学设计

有理数的乘法教学设计

《有理数乘法》教学反思通用

有理数教学设计

有理数乘法教学心得体会(共7篇)

本文标题: 有理数的乘法教学设计(整理6篇)
链接地址:https://www.dawendou.com/jiaoxue/jiaoxuesheji/1781853.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《有理数的乘法教学设计(整理6篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有