函数单调性与最值教案模板
第1篇:函数的单调性与极值教案
函数的单调性与极值教案
目的要求
1.理解并掌握函数最大值与最小值的意义及其求法.
2.弄清函数极值与最值的区别与联系.
3.养成整体思维的习惯,提高应用知识解决实际问题的能力.
内容分析
1.教科书结合函数图象,直观地指出函数最大值、最小值的概念,从中得出利用导数求函数最大值和最小值的方法.
2.要着重引导学生弄清函数最值与极值的区别与联系.函数最大值和最小值是比较整个定义域上的函数值得出的,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的.
3.我们所讨论的函数y=f(x)在[a,b]上有定义,在开区间(a,b)内有导数.在文科的数学教学中回避了函数连续的概念.规定y=f(x)在[a,b]上有定义,是为了保证函数在[a,b]内有最大值和最小值;在(a,b)内可导,是为了能用求导的方法求解.
4.求函数最大值和最小值,先确定函数的极大值和极小值,然后,再比较函数在区间两端的函数值,因此,用导数判断函数极大值与极小值是解决函数最值问题的关键.
5.有关函数最值的实际应用问题的教学,是本节内容的难点.教学时,必须引导学生确定正确的数学建模思想,分析实际问题中各变量之间的关系,给出自变量与因变量的函数关系式,同时确定函数自变量的实际意义,找出取值范围,确保解题的正确性.从此,在函数最值的求法中多了一种非常优美而简捷的方法求导法.依教学大纲规定,有关此类函数最值的实际应用问题一般指单峰函数,而文科所涉及的函数必须是在所学导数公式之内能求导的函数.
教学过程
1.复习函数极值的一般求法 ①学生复述求函数极值的三个步骤.②教师强调理解求函数极值时应注意的几个问题.2.提出问题(用字幕打出)
①在教科书中的(图2-11)中,哪些点是极大值点?哪些点是极小值点?
②x=a、x=b是不是极值点?
③在区间[a,b]上函数y=f(x)的最大值是什么?最小值是什么?
④一般地,设y=f(x)是定义在[a,b]上的函数,且在(a,b)内有导数.求函数y=f(x)在[a,b]上的最大值与最小值,你认为应通过什么方法去求解?
3.分组讨论,回答问题
①学生回答:f(x2)是极大值,f(x1)与f(x3)都是极小值.②依照极值点的定义讨论得出:f(a)、f(b)不是函数y=f(x)的极值.③直观地从函数图象中看出:f(x3)是最小值,f(b)是最大值.(教师在回答完问题①②③之后,再提问:如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?)
④与学生共同讨论,得出求函数最值的一般方法:
i)求y=f(x)在(a,b)内的极值(极大值与极小值);
ii)将函数y=f(x)的各极值与f(a)、f(b)作比较,其中最大的一个为最大值,最小的一个为最小值.4.分析讲解例题
例4 求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.板书讲解,巩固求函数最值的求导法的两个步骤,同时复习求函数极值的一般求法.例5 用边长为60cm的正方形铁皮做一个无盖小箱,先在四角分别截去一个小正方形,然后把四边翻转90角,再焊接而成(教科书中图2-13).问水箱底边的长取多少时,水箱容积最大,最大容积为多少?
用多媒体课件讲解:
①用课件展示题目与水箱的制作过程.②分析变量与变量的关系,确定建模思想,列出函数关系式V=f(x),xD.③解决V=f(x),xD求最值问题的方法(高次函数的最值,一般采用求导的方法,提醒学生注意自变量的实际意义).④用几何画板平台验证答案.5.强化训练
演板P68练习
6.归纳小结
①求函数最大值与最小值的两个步骤.②解决最值应用题的一般思路.布置作业
教科书习题2.5第4题、第5题、第6题、第7题.
第2篇:单调性及最值
长垣一中学生课堂导学案提纲编号:高二数学7一轮复习(2013-7-18)编制:审核:高二文数数学组
函数单调性及最值 复习学案
班级:姓名:小组:评价:【考纲要求】
1.了解韩式单调性的概念;
2.掌握判断一些简单函数单调性的方法;
3.了解函数最值的定义,掌握求函数最值的基本方法。 【学习重点】函数单调性的判断方法 【学习难点】函数的最值的求法 【课堂六环节】
一、“导”------教师导入新课(2分钟)
二、“思”------自主学习。学生结合下列知识点自主学习(背公式,做题).复习要点
一、函数的单调性
二、判定函数单调性的常见方法
(1)定义法:如上述步骤,这是证明或判定函数单调性的常用方法(2)图象法:根据函数图象的升降情况进行判断。
(3)直接法:运用已知的结论,直接得到函数的单调性,如一次函数、二次函数、反比例函数的单调性均可直接说出。直接判定函数的单调性,可用到以下结论:
①函数yf(x)与函数yf(x)的单调性相反②函数y(x)恒为正或恒为负时,函数y
f(x)
与yf(x)的单调性相反。
③在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等
2.单调区间的定义
若函数f(x)在区间D上是或,则称函数f(x)在这一区间上具有(严格的)单调性,f(x)的单调区间.
三、函数的最值 (1)若函数是二次函数或可化为二次函数型的函数,常用配方法。
(2)利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用函数的单调性求最值。(3)基本不等式法:当函数是分式形式且分子分母不同次时常用此法(但有注意等号是否取得)。(4)导数法:当函数比较复杂时,一般采用此法
(5)数形结合法:画出函数图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围。典例剖析:
题型1:判断函数的单调性 例1 证明函数f(x)x
1x
在(0,1)上为减函数。
变式1.讨论函数f(x)=x+a
x
(a>0)的单调性.例2.已知函数f(x)=x
2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.变式2.求函数y=log1(4x-x2)的单调区间
.例3.已知f(x)是定义在[-1,1]上的增函数,且f(x2)f(1x),求x的取值范围。
题型2:求函数的最值
例4 求函数y=4-32xx2的最值;
变式3.求函数y=x+
4x的最值
题型3:已知函数的单调性,求参数的范围
例4.已知函数f(x)= |2x+a|的单调递增区间是3,,则a=
ax,(x变式4.已知f(x)
1)是R上的单调递增函数,则a的取值范围是()
(4a
2)x2,(x1)A(1,+)B4,8C(4,8)D(1,8)
三、“议”------(8分钟)
四、“展”------(8分钟)
五、“评”------(8分钟)
六、“检”------(4分钟)。 【当堂检测】
1、在区间(0,+∞)上不是增函数的函数是
()
A.y=2x+1 B.y=3x2+
1C.y=
2x
D.y=2x
2+x+1
2、函数yx22x在[1,2]上的最大值为()
A、1B、2C、-1D、不存在3、函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于()
A.-7
B.1 C.17 D.2
54.函数y=x
2+bx+c(x∈[0,+))是单调函数,则b的取值范围是().A.b0B.b0C.b>0D.b
2x+6,x∈[1,2])
x+7,x∈[-1,1],则f(x)的最大值、最小值分别为(A.10,6B.10,8C.8,6D.以上都不对
6.已知函数y=f(x)是定义在R上的增函数,则f(x)=0的根()A.有且只有一个B.有2个
C.至多有一个D.以上均不对
若函数f(x)=x2+(a2-4a+1)x+2在区间(-∞,1]上是减函数,则a的取值范围是()
A.[-3,-1]B.(-∞,-3]∪[-1,+
∞)C.[1,3]
D.(-∞,1]∪[3,+∞)
函数f(x)=x3+ax2+bx+c,其中a、b、c∈R,则a2-3b<0时,f(x)是()
7.8.
A.增函数B.减函数
C.常数函数D.单调性不确定的函数
8.已知函数f(x)=3-2|x|,g(x)=x2-2x.构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当
9.f(x)=ln(4+3x-x)的单调递减区间是()A.(-∞,]
f(x)<g(x)时,F(x)=f(x),那么F(x)()A.有最大值3,最小值-1B.有最大值3,无最小值 C.有最大值7-27,无最小值D.无最大值,也无最小值
9.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m的取值范围是.10.已知f(x)在定义域(0,+∞)上为增函数,满足f(xy)=f(x)+f(y),f(3)=1,解不等式f(x)+f(x-8)≤2.
B.[,+∞)
C.(-1,]
D.[,4)
4.已知函数f(x)在区间[a,b]上单调,且f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上()A.至少有一实根B.至多有一实根C.没有实根
D.必有惟一的实根
5.函数y=lg(x+2x+m)的值域是R,则m的取值范围是()A.m>1B.m≥
1C.m≤
1D.m∈R
6.函数f(x)(x∈R)的图象如下图所示,则函数g(x)=f(logax)(0<a<1)的单调减区间是()A.[0,]B.(-∞,0)∪[,+
∞)C.[a,1]D.[a,a1]7.已知f(x)=
(3a1)x4a
logax
(x1)(x1)
1212
是(-∞,+∞)上的减函数,那么a的取值范围是()
A.(0,1)
B.(0,)C.[,)
1713
D.[,1)
第3篇:函数的单调性教案
数学必修一
§1.3.1函数的单调性
姓名:吴志强
班级:统计08-2班 院系:数学与统计学院
学号:08071601021 §1.3.1函数的单调性
一、教学目标
1)通过已学过的函数,学会运用函数图象理解和研究函数性质 2)理解函数单调性的定义及单调函数的图像特征
3)能够熟练的应用定义判断函数在某一区间的单调性
4)通过本节知识的学习,培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的思想方法去分析和处理问题,以提高学生的思维品质
二、教学重点
函数单调性的定义及单调函数的图像特征
三、教学难点
利用函数的单调性的定义判断或证明函数的单调性
四、教学与学法
启发式教学,充分发挥学生的主体作用
五、教学过程
(一)引入
如图为某地区2012年元旦这一天24小时内的气温变化图,教师提问:在0点到4点,气温随着时间的推移是怎么变化的?在4点到14点,气温随着时间的推移又是怎么变化的?
教师指出:上面两种现象都是单调性现象。那么,在数学上我们如何定义函数的单调性呢?
(二)作出下列函数的图像
图像1 y2x1在R上,y随x的增大而增大,若任意x1x2,则f(x1)f(x2)(左到右为上升)称为增函数
图像2 y2x1在R上,y随x的增大而减小,若任意x1x2,则f(x1)f(x2)(左到右为下降)称为减函数 图像3
yx2以对称轴,左侧下降,右侧上升
在(,0]上,y随x的增大而减小,得出函数在此区间为减函数 在(0,]上,y随x的增大而增大,得出函数在此区间为增函数
问:如何用数学语言来描述增函数与减函数呢? 以yx2为例,在(0,]上任取x1,都有x1x2
22、x2,则
f(x1)x12,f(x2)x22,对任意的0x1x2xx2,所以在区间(0,]上,对任意的1都有f(x1)f(x2)2,即yx在(0,]上,当x增大时,函数值f(x)相应随之增大,得出yx2在(0,]上为增函数
2在区间(,0]上同理推得yx
(三)定义
为减函数
一般的设函数f(x)的定义域为I
a)如果对于定义域I内某一区间D上任意两个自变量的值
1、2,当都有f(x1)f(x2)xxx1x2时,,那么说函数f(x)在区间D上为增函数
xxx1x2b)如果对于定义域I内某一区间D上任意两个自变量的值
1、2,当都有
f(x1)f(x2)时,那么说函数f(x)在区间D上为减函数
(四)单调性、单调区间定义:
如果函数yf(x)在这一区间D上是增函数或减函数,那么就说函数yf(x)在这区间具有(严格的)单调性,区间D为yf(x)的单调区间
(五)举例
例
1、如图,yf(x)在定义在[5,5]的函数,根据图像说出函数的单调区间,以及每一单调区间上它为增函数还是减函数。
解:单调区间[5,2],[2,1],[1,3],[3,5]
[5,2],[1,3]为减函数,[2,1],[3,5]为增函数
注意:
a)书写时,区间与区间用逗号隔开,不能用“”链接
b)对于孤立点,没有单调性,所以区间端点处如有定义,写开闭均可 c)函数为增函数、减函数是对定义域内某一区间而言的例
2、证明f(x)2x3在R上为单调减函数 证明:
设x1,x2是R上任意两个值,且x1x2,则f(x1)-f(x2)=(-2x1+3)-(-2x2+3)=-2(x1-x2)x1x2 x1x20 -2(x1x2)0f(x1)f(x2)0 即f(x1)f(x2)函数f(x)2x3在R上为单调减函数
小结:证明函数单调性的步骤 a)设值,设任意的1、b)作差变形,xx2,且
x1x2
f(x1)-f(x2)变形常用的方法有:因式分解、配方、有理化等的正负 c)判断差符号,确定
f(x1)-f(x2)d)下结论,由定义得出函数的单调性
(六)课堂练习证明f(x)x在[0,+]是增函数证明:设x1,x2[0,+),且x1x2则f(x1)-f(x2)=x1-x2=x1-x21(x1-x2)(x1(x1x20x2)x2)x1-x2x1+x2(对分子有理化详细讲解)又0x1
给学生时间做P32 练习4
解: 设x1,x2是R上任意两个值,且x1x2,则f(x1)-f(x2)=(-2x1+1)-(-2x2+1)=-2(x1-x2)x1x2 x1x20 -2(x1x2)0 f(x1)f(x2)0 即f(x1)f(x2)函数f(x)2x1在R上为单调减函数
(七)课堂小结
a)增函数、减函数的定义 b)图像法判断函数的单调性
(由左到右上升,为增函数,由左到右下降,为减函数)c)证明单调函数的步骤
(设值…………作差变形………….判断差符号………..下结论………..)
(八)作业
P39 习题1、3 A 组
1、题2
判断函数f(x)=-x3+1在(-∞,0)上是增函数还是减函数,并证明你的结论;如果x∈(0,+∞),函数f(x)是增函数还是减函数?
第4篇:函数的单调性教案
函数的单调性
教学目标
知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。
能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。:
教学重点:函数单调性的有关概念的理解
教学难点:利用函数单调性的概念判断或证明函数单调性
教 具: 多媒体课件、实物投影仪
教学过程:
一、创设情境,导入课题
[引例1]如图为2006年黄石市元旦24小时内的气温变化图.观察这张气温变化图:
问题1:气温随时间的增大如何变化?
问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?
[引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。
结论:(1)y轴左侧:逐渐下降; y轴右侧:逐渐上升;
(2)左侧 y随x的增大而减小;右侧y随x的增大而增大。
上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。
二、给出定义,剖析概念
①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值
⑴若当图3);
⑵若当图4)。
)>f(),则f(x)在这个区间上是减函数(如
)
),则f(x)在这个区间上是增函数(如
②单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。
注意:
(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。
当x1 f(x2)y随x增大而减小。
几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。
(2)函数单调性是针对某一个区间而言的,是一个局部性质。
有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
判断2:定义在R上的函数 f(x)满足 f(2)> f(1),则函数 f(x)在R上是增函数。(×)
函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。
训练:画出下列函数图像,并写出单调区间:
三、范例讲解,运用概念
具有任意性,例1、如图,是定义在闭区间[-5,5]上的函数出函数。的单调区间,以及在每一单调区间上,函数的图象,根据图象说
是增函数还减
注意:
(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。
(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。
例2 判断函数 f(x)=3x+2 在R上是增函数还是减函数?并证明你的结论。
引导学生进行分析证明思路,同时展示证明过程:
证明:设任意的 由
于是
即
所以。
在R上是增函数。,得,且,则
分析证明中体现函数单调性的定义。
利用定义证明函数单调性的步骤:
①任意取值:即设x
1、x2是该区间内的任意两个值,且x1
②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形
③判断定号:确定f(x1)-f(x2)的符号
④得出结论:根据定义作出结论(若差0,则为增函数;若差
0,则为减函数)
即“任意取值——作差变形——判断定号——得出结论”
例
3、证明函数
证明:设,且
在(0,+)上是减函数.,则
由
又由
于是
即。,得,得即
(*)。
所以,函数
问题1 :
在区间
在上是单调减函数。
上是什么函数?(减函数)在定义域
上是减函数?(学生讨论
问题2 :能否说函数得出)
四、课堂练习,知识巩固
课本59页 练习:第1、3、4题。
五、课堂小结,知识梳理
1、增、减函数的定义。
函数单调性是对定义域的某个区间而言的,反映的是在这一区间上函数值随自变量变化的性质。
2、函数单调性的判断方法:(1)利用图象观察;(2)利用定义证明:
证明的步骤:任意取值——作差变形——判断符号——得出结论。
六、布置作业,教学延伸
课本60页习题2.3 :第4、5、6题。
第5篇:复合函数单调性教案
复合函数单调性教案
教学目标 知识目标
1.掌握有关复合函数单调区间的四个引理.2.会求复合函数的单调区间.3.必须明确复合函数单调区间是定义域的子集.能力目标
培养学生的数学转化思想和构建数学建模能力。情感目标
培养学生分析问题,解决问题的能力。教学重点与难点
1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.教学过程设计
师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.生:设y=f(u)的定义域为A,u=g(x)的值域为B,若AÍB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.师:很好.下面我们再复习一下所学过的函数的单调区间.(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)(教师板书,可适当略写.)例
求下列函数的单调区间.1.一次函数y=kx+b(k≠0).解 当k>0时,(-∞,+∞)是这个函数的单调增区间;当k<0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=k(k≠0).x解 当k>0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k<0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax2+bx+c(a≠0).bb)是这个函数的单调减区间,(-,+∞)是它的单调增区间;2a2abb当a<0时(-∞,-)是这个函数的单调增区间,(-,+∞)是它的单调减区间;
2a2a解
当a>0时(-∞,-4.指数函数y=ax(a>0,a≠1).
解
当a>1时,(-∞,+∞)是这个函数的单调增区间,当0<a<1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=logax(a>0,a≠1).解
当a>1时,(0,+∞)是这个函数的单调增区间,当0<a<1时,(0,+∞)是它的单调减区间.师:我们还学过幂函数y=xn(n为有理数),由于n的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.师:我们看看这个函数y=2x2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数.师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.(板书)引理1 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明
在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢? 生:不能.因为并非所有的简单函数都是某区间上的增函数.师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.(教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明
在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:我们明白了上边的引理及其证明以后,剩下的引理我们自己也能写出了.为了记忆方便,咱们把它们总结成一个图表.(板书)
师:你准备怎样记这些引理?有规律吗?
(由学生自己总结出规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数.)师:由于中学的教学要求,我们这里只研究y=f(u)为u的单调函数这一类的复合函数.做例题前,全班先讨论一道题目.(板书).例1 求下列函数的单调区间:
y=log4(x2-4x+3)师:咱们第一次接触到求解这种类型问题,由于对它的解题步骤、书写格式都不太清楚,我们先把它写在草稿纸上,待讨论出正确的结论后再往笔记本上写.师:下面谁说一下自己的答案? 生:这是由 y=log4u与u=x2-4x+3构成的一个复合函数,其中对数函数 y=log4u 在定义域(0,+∞)上是增函数,而二次函数u=x2-4x+3,当x∈(-∞,2)时,它是减函数,当x∈(2,+∞)时,它是增函数,.因此,根据今天所学的引理知,(-∞,2)为复合函数的单调减区间;(2,+∞)为复合函数的单调增区间.师:大家是否都同意他的结论?还有没有不同的结论?我可以告诉大家,他的结论不正确.大家再讨论一下,正确的结论应该是什么? 生:……
生:我发现,当x=1时,原复合函数中的对数函数的真数等于零,于是这个函数没意义.因此,单调区间中不应含原函数没有意义的x的值.师:你说得很好,怎样才能做到这点呢? 生:先求复合函数的定义域,再在定义域内求单调区间.师:非常好.我们研究函数的任何性质,都应该首先保证这个函数有意义,否则,函数都不存在了,性质就更无从谈起了.刚才的第一个结论之所以错了,就是因为没考虑对数函数的 定义域.注意,对数函数只有在有意义的情况下,才能讨论单调性.所以,当我们求复合函数的单调区间时,第一步应该怎么做? 生:求定义域.师:好的.下面我们把这道题作为例1写在笔记本上,我在黑板上写.(板书)解
设 y=log4u,u=x2-4x+3.由
{u>0,u=x2-4x+3,解得原复合函数的定义域为x<1或x>3.师:这步咱们大家都很熟悉了,是求复合函数的定义域.下面该求它的单调区间了,怎样求解,才能保证单调区间落在定义域内呢? 生:利用图象.师:这种方法完全可以.只是再说清楚一点,利用哪个函数的图象? 可咱们并没学过画复合函数的图象啊?这个问题你想如何解决? 生:……
师:我来帮你一下.所有的同学都想想,求定义域也好,求单调区间也好,是求x的取值范围还是求复合函数的函数值的取值范围?或是求中间量u的取值范围? 生:求x的取值范围.师:所以我们只需画x的范围就行了,并不要画复合函数的图象.(板书)师:当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,+∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.师:除了这种办法,我们还可以利用代数方法求解单调区间.下面先求复合函数单调减区 间.(板书)u=x2-4x+3=(x-2)2-1, x>3或x<1,(复合函数定义域)x<2(u减)解得x<1.所以x∈(-∞,1)时,函数u单调递减.由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.(板书)u=x2-4x+3=(x-2)2-1, x>3或x<1,(复合函数定义域)x>2(u增)解得x>3.所以(3,+∞)是复合函数的单调增区间.师:下面咱们再看例2.(板书)例2
求下列复合函数的单调区间:
y=log(2x-x2)师:先在笔记本上准备一下,几分钟后咱们再一起看黑板,我再边讲边写.(板书)解
设 y=logu,u=2x-x2.由
u>0
u=2x-x2 解得原复合函数的定义域为0<x<2.由于y=log13u在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由
0<x<2(复合函数定义域)
x≤1,(u增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.又u=-(x-1)2+1在x≥1时单调减,由
x<2,(复合函数定义域)
x≥1,(u减)解得0≤x<2,所以[0,1]是原复合函数的单调增区间.师:以上解法中,让定义域与单调区间取公共部分,从而保证了单调区间落在定义域内.师:下面我们再看一道题目,还是自己先准备一下,就按照黑板上第一题的格式写.(板书)例3 求y=(学生板书)的单调区间.解
设y=.由
u∈R,u=x2-2x-1, 解得原复合函数的定义域为x∈R.因为y=在定义域R内为减函数,所以由引理知,二次函数u=x2-2x-1的单调性与复合函数的单调性相反.易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由
x∈R,(复合函数定义域)
x≤1,(u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.师:黑板上这道题做得很好.请大家都与黑板上的整个解题过程对一下.师:下面我小结一下这节课.本节课讲的是复合函数的单调性.大家注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.(作业均为补充题)作业
求下列复合函数的单调区间.1.y=log3(x2-2x);(答:(-∞,0)是单调减区间,(2,+∞)是单调增区间.)
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《函数单调性与最值教案模板》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
