当前位置: 首页 > 教学资源 > 教学课件

几何画板教学课件(共16篇)

作者:ZHOUZHOU | 发布时间:2020-05-18 10:21:51 收藏本文 下载本文

第1篇:几何画板教学大纲

《几何画板多媒体CAI课件制作》教学大纲

课程名称:几何画板多媒体CAI课件制作 学时/学分:30学时/1.5学分 先修课程:高等数学,计算机应用基础 适用专业:理工科各专业

开课院(系):数学与计算机科学学院

一、课程简介

《几何画板》软件是由美国Key Curriculum Pre公司制作并出版的几何软件。它的全名是《几何画板--21世纪的动态几何》。它是一个适用于几何教学的软件平台。它为教师和学生提供了一个探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪及轨迹等方式构造出较为复杂的几何图形。它的特色首先能把较为抽象的几何图形形象化,但是它最大的特色是“动态性”,即:可以用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变,这样更有利于在图形的变化中把握不变,深入学习几何的精髓,突破了传统教学的难点。还可帮助物理化学等专业师生探索运动物体在运动中的规律。

《几何画板》操作简单,只要用鼠标点取工具栏和菜单就可以开发课件。它无需编制任何程序,一切都只借助于几何关系来表现,因此它只适用于能够用数学模型来描述的内容——例如部分物理、化学、天文问题等。因此,它非常适合于几何及物理老师及相关学生使用,因为用它进行课件开发或实验研究最关键的是“把握几何关系”,这正是老师所擅长的及学生所需要的。用《几何画板》进行课件开发速度非常快,进行实验时容易得出结果。一般来说,如果有设计思路的话,操作较为熟练的老师开发一个难度适中的课件只需5-10分钟。正因为如此,老师们才能真正把精力用于课程的设计而不是程序的编制上,才能使技术真正地促进和帮助教学工作,并进一步推动教育改革的发展。

学习数学需要数学逻辑经验的支撑,而数学经验是从操作活动中获得。离开人的活动是没有数学、也学不懂数学的。《几何画板》可以给学生创造一个实际“操作”几何图形的环境。学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。因此,《几何画板》还能为学生创造一个进行几何实验及物理实验(特别是力学)的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。从这个意义上说《几何画板》不仅应成为教师教学的工具,更应该成为学生的有力的认知工具。

《几何画板》是一个“个性化”的面向理学、工学学科的工具平台。这样的平台能帮助所有愿意使用信息技术的老师在教学中使用,也能帮助学生在实际操作中把握学科的内在实质,培养他们的观察能力、问题解决能力,并发展思维能力,提高数学素质。

《几何画板软件》课程属于自然科学类。该课程的任务是使学生从应用角度出发,掌握软件的功能及使用技巧,熟练掌握几何画板的基本功能,设计技巧及应用,达到熟练地制作教学课件的目的,同时能以该软件为平台去探索和研究相关课程中的内容。学会利用几何画板进行微型课件的设计思想和方法,培养学生不断进取,积极探索、努力创新的能力。

二、课程的教学内容、基本要求及学时分配

(一)几何画板软件快速入门„„„„„„„„„„„„„„„„„„„„„„2学时 1. 认识《几何画板》软件。

2. 熟悉系统的安装和使用、工具框的使用方法。3. 掌握保存文件的方法、打开文件的方法。4. 演示几个课件显示软件的强大功能。

(二)绘制常见图形和几何体 „„„„„„„„„„„„„„„„„„„„„„2学时

1. 掌握“作图”菜单的使用、基本图形的制作。2. 熟悉复杂图形的制作、轨迹的生成。

(三)“图表”及“度量”菜单的使用„„„„„„„„„„„„„„„„„„„6学时

1. 知道“图表”菜单的使用、“度量”菜单的使用。

2. 掌握各种坐标系的建立、绘制函数的方法、制表的方法;长度、距离、面积的度量。3. 熟悉作图、变换、度量的综合应用。

(四)“变换”菜单的使用„„„„„„„„„„„„„„„„„„„„„„„„„6学时

1. 知道“变换”菜单的使用。2. 掌握平移、旋转、缩放、反射。3. 熟悉迭代过程。

(五)参数及记录的使用„„„„„„„„„„„„„„„„„„„„„„„„„3学时

1. 知道如何进行系统参数设置、不同的系统参数对画板。

2. 了解单位、颜色、文本、导出、采样及系统等系统参数的设置、了解多文档的设置及文档间的转换。

(六)综合实例(本段内容可根据学生实际进行选讲)„„„„„„„„„„„11学时

1 了解制作课件封面动画的方法、文字的飞入飞出、查看别人是如何做课件,了解下列几种操作技巧:椭圆的N种构造方法、构造多驱动点类型轨迹的方法、随心所欲地控制动画速度的方法、让对象闪烁起来的方法、数学公式和符号的使用方法、多重动画的实现方法、任意平移、旋转、缩放函数图象、让立体图形动起来的方法。2 掌握任意时间间隔的动画(或移动、显示、隐藏等)、制作特殊的函数的图象及几何体的截面。

3 物理学上的案例制作:如弹簧振子、凸透镜成像及平面镜成像等。4 与其他多媒体课件制作软件的联系。

三、推荐教材及参考书

使用教材:方其桂主编,几何画板多媒体课件制作实例教程,北京:清华大学出版社,2003年,第二版。主要参考书:

1.陶维林编,几何画板实用范例教程,北京,清华大学出版社,2000年。2.王鹏远等编,如何用几何画板教学,北京,人民教育出版社,2004年。3.刘甘娜编,计算机辅助教学,北京,高等教育出版社,1998年。

四、考核方式

在学完本课程后,安排一个课程作业,要求学生用《几何画板》制作一个较高水平的课件。

第2篇:几何画板与课堂教学

几何画板与课堂教学

目前的数学课堂教学,从内容上可分为概念(定理)教学和解题教学,前者是新知识的引入,后者是它们的应用。在知识的引入中,传统的教学方法是把概念直接告诉学生。课后,总有教师抱怨,讲过概念后,学生并不能好好理解,碰到具体例子时也不会用。

我认为上述情况发生的原因为:课堂上传授的知识未在学生的心理上得到应有的认同,教学过程中缺乏学生的主动参与,简单的说就是没有学生参与的教学活动几乎是无效(起码是低效)的教学活动。《几何画板》刚好为学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的园地。有了几何画板,就可以为认识概念创设了一个很好的“情景”。

例如,上“双曲线”这一节的第一课时,我们可以首先把课件制作的过程展现在学生面前,与学生一起来完成“双曲线”概念的构建。

老师:根据上节课椭圆的定义,以及这节课双曲线的构造,讲一下什么是双曲线?

学生:平面上一个动点到两个定点的距离的差的绝对值是一个定值,且这个定值小于两定点间的距离的点的轨迹。„„

在“双曲线”定义概念的教学中,我们事先并没有制作好课件,而是把制作的过程展现在学生的面前,力图正确利用“几何画板”这一优秀软件,通过这一“过程”来让学生完成“双曲线”的“意义建构”。整个过程不把教师的认识强加给学生,始终让学生处于认知的“主体”地位。学生的思维得到了发展,观察能力、归纳能力得到提高;概念的理解更加清晰、准确;知识间的联系建立;印象更加深刻。

这种教学模式显然优越于教师滔滔不绝的“讲”学生被动的“听”的教学。学生通过自己亲身的实践活动,感受、理解知识产生和发展的过程,从而形成自己的经验、猜想,产生对结论的感知,实现对知识意义的主动建构,可以说学生是在“做数学”。这不仅使学生对所学的内容留下了深刻的印象,而且让学生能力得到了培养,素质得到了提高。

第3篇:几 何 画 板 》辅 助 教 学 举 例

几 何 画 板 》辅 助 教 学 举 例

邢杰 | | |

摘要:本文主要介绍将《计划画板》直接用于课堂教学的几点作法和想法,也是对课堂教学改革的一点探讨

关键字:几 何 画 板 ;教 学

作为专为数学教学设计的软件《几何画板》,因具有完备的功能,操作简便,深受中学数学教师的喜爱,而将《几何画板》直接用于课堂教学,既改变了教师教学模式,也改变了学生学数学的模式,收到较好的效果。

一、绘制函数图像,帮助学生分析问题

现行教课书中,学习的基本初等函数,贯穿整个高中阶段的学习,学生对这些“基本初等函数”从定义域、值域、图像、性质的掌握并不觉得困难,但由这些基本初等函数经有限次加、减、乘、除、乘方、开方、复合生成的初等函数,学生在学习中感觉不好理解。在数学学习中,“数形结合”是传统的、形之有效的教与学的方法,而往往一个并不复杂的函数,想绘制草图都很困难。苦于条件限制,教师在教学中也只是就基本初等函数具有的性质根据复合函数、单调性等定义,反复讲解复合后的函数性质,从理论到理论,但效果也并不理想,往往需要配备大量的重复的练习才能使接受能力较好的同学摸到一些门道。

我在这段内容的教学中,使用《几何画板》中“绘制新函数”功能,较好地解决了这个问题。

例:讨论y=log2[(x-2)2-2]的性质

刚刚学过对数函数,学生知道logaX的函数在a>1时是增函数,所以立即有学生回答这是增函数,对于学生的积极性,我并没有立即肯定、或否定学生的回答,而是用《几何画板》当场作出函数的图像。操作如下:打开《几何画板》,选择“图表”菜单,下拉到“绘制新函数”单击,在计算器中输入函数y=。单击“确定”。

出现如图画面。

结合函数图像,再请学生分析:①图像为什么是这样的?②解题应从哪些方面入手?③怎样根据定义,写出

解题过程?④如果改变底数“2”为“ ”会怎样?⑤y= 图像与y= 的图像有什么共性?这个共性是怎样产生的?⑥如果函数是y=a(x-2)-2,(a>0,a≠1)会有怎样的性质?

随着一系列问题的不断探讨,并获得解决,使学生从感性认识上升到理性认识,而这个图像也使学生加深了对复合函数的认识,掌握讨论并解决这类问题的有效办法。

二、利用“轨迹”画图功能,让学生实践“转移法”。

“转移法”或称“代入法”是学生解题实践中的重要方法之一。高中数学中较早使用这种方法可能要数“奇偶函数知一半而求另一半”了,新教材对“函数奇偶性”没有在函数性质中出现,而是作为三角函数的一个性质出现的,可见新教材对“函数奇偶性”是欲舍不能的。鉴于它对讨论函数性质的重要性,和解题方法的代表性,我进行了下例课堂实例:

设y=f(x)是R上的奇函数,x>0时,f(x)=2x2-4x+1

求x<0时,f(x)的表达式。

教学过程:

1.利用《几何画板》作出y=f(x)(x<0)的图像

①作f(x)=2x2-4x+1(x>0)图像

②在图像上取一动点A,并选中,同时选原点O,③下拉“变换”菜单中“标记向量”单击,工作区会闪现“A„„„„O”;

④选中圆点O,下拉“变换”菜单中的“平移”,弹出一对话框,单击“确定”,工作区出现了A关于圆点O的对标点A′;

⑤单击右键,在快捷菜单中单击“追踪点”,设置A点运动观察A'点轨迹;

⑤'同时选中A′、A,下拉“构造”菜单中的“轨迹”,单击,工作区便出现了f(x)=2x2-4+1关于原点O对称的曲线y=f(x),(x<0)的图像。

2.讨论y=f(x)(x<0)的解析式及求法

通过观察、分析、讨论,请学生叙述讨论结果。

学生甲:y=f(x)(x>0)的图像是抛物线的一段,它关于原点对称的另一半肯定也是一段抛物线,与已知的一段开口大小一样,仅是方向不同,且已知的抛物线对称轴方程是“x=1”,顶点坐标是(1,-1),它们关于原点对称的对称轴方程是x=-1,顶点(-1,1),所以若设y=f(x)=a(x-m)2+n(x<0)时,就有a=-2, m=-1, n=1。所以表达式为f(x)=-2x2-4x-1(x<0)。

教师:很好,结果也完全正确。先定形,再求解析式,是“待定系数法”的具体应用。第二个问题是:你怎么知道欲求的函数是抛物线的二次函数呢?如果这个函数的图像不是我们熟悉的,也就是在你不能先假设“所求函数为f(x)=a(x-m)2+n,(x<0)”时,怎么办?

同学们立刻热闹起来,七嘴八舌,但很快恢复平静,因为一时的确没有什么好办法。

教师:再看图像的作法,(隐藏“轨迹”),图像是A′运动产生的,事先我们知道A′点如何运动吗?——不知道。A′是怎么来的?——是A关于原点O的对称点。若设A′(x、y),则A(-x,-y),A点怎么运动知道吗?已有学生看出端倪,即请他回答。

生:A在f(x)=2x2-4+1上运动,它的坐标应该适合函数表达式,将(-x,-y)代入y=2x2-4x+1即可得-y=2x2+4x+1

y=-2x2-4x-1,这就是A′点x、y之间的关系式,即所求函数f(x)=-2x2-4x-1(x<0)。

3.归纳、总结解题过程并提高

师:完全正确。现在,我们将已知函数仅用y=f(x)(x>0)表示,完成解题过程。(略)这个过程体现了求曲线方程的“转移法”,请同学们自己体会一下,转移什么?怎样转移的。如果将原点改成y轴,我们将得到什么函数解析式(图像)。

三、使用《几何画板》有助于培养学生的逻辑性,严密性

现在课堂教学中,多媒体的优越性已越来越得到认可。与此同时,课件的制作就成了多媒体课堂教学中重要的组成部分,由于课件制作是脑力劳动,体力劳动的结合,且有些课件制作还相当费时,所以现在有些多媒体课堂教学中,制作的课件成了“演示”品,教师上课不由自主地在存在“演示”课件现象,这多少有点背离多媒体课堂教学的初衷。

《几何画板》由于基本操作简单,很多“课件”可以也应该在课堂上当场完成,条件许可的情况下,由学生自己绘制图像效果更好。

在学习《几何画板》“基本操作”这节课里,我让学生在基本操作学习之后,绘“变化参数a、b、c的值,看函数y=ax2+bx+c图像变化”的页面。

有同学将页面绘成了下图。(错选了横、纵坐标值的先后顺序),有同学在大功将告成时,突然消失了页面上许多元素,(误操作删除了父对象,其子对象自然删除)急得想哭。

《几何画板》中所有“构造”功能,都是由欧几里德几何作基础的,因此所有“功能”不能实现的操作都是条件不具备(充分条件不具备),而点击对象后设置运动,运动的结果不是目标中想要的结果(如满屏内容乱跑)那一定是目标结果的充分条件错了。

这节课里,有几点收获:

一是通过自己操作切身体验,变学数学为做数学,充分体会到数学的逻辑性,严密性的重要意义,比老师反复强调“说话(解题)要言之有据”效果好得多。

二是学生自己使用这个软件后,对过去学过的一些知识,借助计算机进行了检验,实现了对知识的再认识。如学生自己讨论有限区间上的二次函数性质,加深了对这一函数性质的理解。

三是建构新的学习模式。传统学习模式一般是:听老师讲解新概念,看老师举例帮助理解,仿例题式样完成作业,做大量课外练习使知识巩固。通过《几何画板》基本操作课的学习,有的学生已悟出学习的新模式:听老师讲解新概念,猜想新概念将会产生的作用,用计算机模拟验证猜想,归纳整理成理性文字(笔记、作业)指导进一步的学习。

第4篇:《几何画板》与数学教学

存档编号

赣南师范学院科技学院学士学位论文

《几何画板》与数学教学

届 别 2012届 专 业 数学与应用数学 学 号 0820151207 姓 名 程思华 指导老师 黄进红 完成日期 2012年4月28日

系 别 数学与信息科学系

目录

内容摘要.........................................................1 关键词...........................................................1 Abstract.........................................................1 Key word.........................................................1 1.《几何画板》简介...............................................2 2.《几何画板》主要功能及其特点...................................2 2.1 《几何画板》的主要功能.......................................2 2.2 《几何画板》的特点...........................................4 3.《几何画板》在数学教学中的主要作用体现.........................5 3.1 《几何画板》在代数教学中的应用...............................5 3.2《几何画板》在立体几何教学中的应用............................5 4.《几何画板》辅助数学教学分析...................................6 5.《几何画板》辅助数学教学课件示例...............................7 5.1 课件制作过程.................................................7 5.2 小结.........................................................9 参考文献........................................................10 致谢............................................................11

《几何画板》与数学教学

内容摘要:《几何画板》是21世纪数学教学的一个新兴软件,它是一个通用的数学教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。本文对几何画板的功能、特点,以及其应用于数学教学进行分析,阐明了几何画板对数学教学的辅助作用。

关键词:几何画板 数学教学 教学分析

Abstract: " Geometry drawing board" in twenty-first Century mathematics teaching an emerging software, it is a general mathematical teaching environment, providing a rich and convenient feature allows users to create arbitrary need to write their own teaching courseware.The Geometer's Sketchpad function, characteristics, and should be used in mathematics teaching to carry on the analysis, explained the Geometer's Sketchpad in mathematics teaching aided function.Key word:The Geometer's Sketchpad Mathematics Teaching Teaching analysis

1.《几何画板》简介

21世纪对于人才的重视程度越来越高,对教育的关注也有增无减,而数学教学便成为了教育环节中的一个重点与难点,由于许多数学概念的抽象化,平面化,使得学生在数学学习上理解困难,而《几何画板》正是解决这一难题的理想的教学软件。

《几何画板》原名:The Geometer's Sketchpad,是由美国Key Curriculum Pre公司研制并出版的几何软件。它是一个适用于数学教学的软件平台,为教师和学生提供了一个探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画和跟踪轨迹等方式,能显示或构造出较为复杂的图形。

《几何画板》操作简单,只要用鼠标点取工具栏和菜单就可以开发课件。它无需编制任何程序,一切都要借助于几何关系来表现,因此它只适用于能够用数学模型来描述的内容。很适合于数学老师使用,这也正是数学老师所擅长的。用《几何画板》进行开发速度非常快,一般来说,如果有设计思路的话,操作较为熟练的老师开发一个难度适中的软件只需5~10分钟。

2.《几何画板》主要功能及其特点

2.1 《几何画板》的主要功能

《几何画板》被誉为是21世纪的动态几何,其功能可见一斑。

《几何画板》是一个通用的数学、物理教学环境,提供丰富而方便的创造功能使用户可以随心所欲地编写出自己需要的教学课件。软件提供充分的手段帮助用户实现其教学思想,只需要熟悉软件的简单的使用技巧即可自行设计和编写应用范例,范例所体现的并不是编者的计算机软件技术水平,而是教学思想和教学水平。可以说《几何画板》是最出色的教学软件之一。

《几何画板》所作出的图形是动态的,可以再图形变动时保持设定不变的几何关系。如设定某线段的重点后,线段的未知、长短、斜率变化时,该点的位置变化,但永远是该线段的中点;设定为平行的直线在动态中永远保持平行。由于能“在运动中保持给定的几何关系”,就可以运用《几何画板》在“变化的图形中,发现恒定不变的几何规律”,给我们开展“数学实验”,进行探索式学习提供了很好的工具。

《几何画板》提供了平移、旋转、缩放、反射灯图形变换功能,可以按指定的值或动态的值对图形进行这些变换,也可以使用由用户定义的向量、距离、角度、比值来控制这些交换。《几何画板》还能对动态的对象进行“追踪”,并能显示该对象的“踪迹”,如点的踪迹、线的踪迹、形成的曲线或包络。利用这一功能可以是学生预先猜测轨迹的形状,还可以看到轨迹形成的过程以及轨迹形成的原因,为观察现象、发现结论、探讨问题创设了较好的情境。

《几何画板》提供了度量和计算功能,能够对所作出的对象进行度量,如度量线段的长度、度量弧长、角度、面积等。还能够对度量出的值进行计算,包括四则运算、函数运算,并把结果动态的显示在屏幕上。当被测量的对象变动时,显示它们大小的量也随之改变,可以动态地观察它们的变化或者关系。这样一来,像研究多边形的内角和之类的问题就非常容易了。许多定量研究也可以借助《几何画板》来进行。

《几何画板》还提供自定义工具,自定义工具就是把绘图过程自动记录下来,形成一个工具,并随文件保存下来,以后可以使用这个工具进行绘图。比如,课前把画正方体的过程记录下来,制作成一个名为“画正方体”的工具,用这个工具在课堂上再画一个正方体只要几秒钟。我们可以把画椭圆、画双曲线、画抛物线或者一些常用图形的制作过程分别记录下来,建立自己的工具库,这可以大大增强《几何画板》的功能。用这一功能还可以揭示他人用《几何画板》制作课件的过程,向他人学习制作经验,提高制作水平,还可以进一步用来进行课件制作方法交流、研究。

《几何画板》支持直角坐标系和极坐标系,支持由y=f(x),x=f(y), r=f(θ),θ=f(r)确定的图像或曲线。只要给出函数的表达式,《几何画板》

能画出任何一个初等函数的图像,还可以给定自变量的范围。如果需要进行动态控制,可以做出含若干个参数的函数图像。用《几何画板》可以画分段函数的图像,而且可以画出分任意段的分段函数的图像。

《几何画板》支持多种坐标系的选择,不但可以作出直角坐标系下方程所表示的曲线,也可以做出极坐标下方程表示的曲线。不仅能制作出由普通方程给出的曲线,也能作出由参数方程给出的曲线

2.2 《几何画板》的特点

《几何画板》的很多不同于其他绘图软件的特点为教学过程中提出问题、探索问题、分析问题和进一步解决问题提供了极好的外部条件,为培养学生的能力提供了极好的工具。

《几何画板》最大的特点是“动态性”:即:可以用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变,这样更有利于在图形的变化中把握不变,深入几何的精髓,突破了传统教学的难点。

《几何画板》操作简单,易于掌握运用。只要用鼠标点取工具栏和菜单就可以开发课件。它无需编制任何程序,一切都要借助于几何关系来表现,因此它只适用于能够用数学模型来描述的内容--例如部分物理、天文问题等。因此,它非常适合于数学老师使用,如果有设计思路的话,用《几何画板》进行开发课件速度非常快。

《几何画板》还能为学生创造一个进行几何“实验”的环境。学习数学需要数学逻辑经验的支撑,而数学经验是从操作活动中获得。离开人的活动是没有数学、也学不懂数学的。在老师的引导下,《几何画板》可以给学生创造一个实际“操作”几何图形的环境。学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。因此,《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创

造性,充分体现了现代教学的思想。

3.《几何画板》在数学教学中的主要作用体现

3.1 《几何画板》在代数教学中的应用

函数是高中的重要知识体系,而函数又是最基本、最重要的概念,它的概念和思维方法渗透在高中数学的各个部分;同时,函数是以运动变化的观点对现实世界数量关系的一种刻画,这又决定了它是对学生进行素质教育的重要材料。就如华罗庚所说:“数缺形少直观,形缺数难入微。”而我们教师在进行函数教学时,备感头疼的是函数的图像,为了解决数形结合的问题,在有关函数的传统教学中,大多数老师用手工绘图,但手工绘图有不精确、速度慢的弊端;而运用《几何画板》快速直观的显示及变化功能,恰好可以克服上述弊端,从而大大提高课堂效率,进而起到事半功倍的效果。

比如,图像的变化是代数教学的一个难点,要说明函数的图像与图像的关系,我们可以通过《几何画板》拖动点反复观察图像移动与t的数量关系,当函数式中t>0时,图像右移,当t

3.2《几何画板》在立体几何教学中的应用

立体几何主要是为了培养学生的空间想象能力而开设的,初学立体几何时,大多数学生不具备丰富的空间想象的能力和较强的平面与空间图形的转化能力,主要原因在于人们习惯于依靠对二维平面图形的直观来感知和想象三维空间图形,而二维平面图形不可能成为三维空间图形的真实写照,平面上绘出的立体图形的平面直观图因受其视角的影响,难于综观全局。而用《几何画板》则能轻松地达到意想不到的效果。

对于棱台的教学,我们往往采用模型进行教学,通过“模型”和“图形”的联系,加深对所授几何体的概念和性质的理解,但“模型”加“图形”的教学方法仍不能直观明了地向学生展示棱台的性质,倘若能通过《《几何画板》》

在前面得到的三棱锥的基础上,在大的棱锥上截取一个小棱锥,然后对这个小棱锥进行移动来实现对棱锥的拆分得到棱台。充分培养学生的空间想象能力,通过《几何画板》解决教学中的重点和难点,也使学生对立体几何学习有一种新的认识,并能产生浓厚的兴趣。

3.3 《几何画板》在平面解析几何教学中的应用

平面解析几何是用代数方法来研究几何问题的一门数学学科,它研究问题的基本思想和基本方法是:根据已知条件,选择适当的坐标系,借助形和数的对应关系,求出表示平面曲线的方程,把形的问题转化为数来研究;再通过方程,研究平面曲线的性质,把数的研究转化为形来讨论。而曲线中各几何量受各种因素的影响而变化,导致点、线按不同的方式做运动,曲线和方程的对应关系比较抽象,学生不易理解。而展示几何图形变形与运动的整体过程在解析几何教学中是非常重要的,这样,《几何画板》就以其极强的运算功能和图形图像功能在解析几何的教与学中大显身手。

4.《几何画板》辅助数学教学分析

培养学生的思维能力。在教师精心的设计下,恰当地利用《几何画板》的演示,协助学生思考而不是代替学生思考,可促进学生思维的发展。在椭圆的离心角的教学中,椭圆的半径为终边的角与椭圆离心角容易混淆。若利用《几何画板》,不仅可以使学生把这两个角的关系辨析清楚,而且电脑动态显示的优势抓住了时机,有助于发展学生的思维能力。

培养学生的探索、观察能力。“探索是数学的生命线”。用《几何画板》进行探索思考、观察,使学生的想象力得以发挥,其显示功能通过动态的演示轨迹,增强学生感性认识,化抽象的事物为具体的事物。

解决许多带参数的轨迹问题,培养学生分类讨论的能力。在画板的帮助下很多需要分类讨论的带参数的问题变得简单,让学生们在思考过程中“兴奋”起来,学生对参数的改变引起轨迹的变化的认识也就更深刻了,分类讨论的思 6

想迎刃而解。

培养学生解决实际应用问题的能力。应用的广泛性是数学的又一特点,数学教学中注重应用。应用题往往难在对实际问题的数学化。而运用画板进行辅助教学将易于揭示其数学本质,有助于增强学生的数学应用能力。

5.《几何画板》辅助数学教学课件示例

范例:一条线段CD的一个短点C在定圆A上运动,制作线段CD的垂直平分线与直线AC的交点的轨迹。

5.1 课件制作过程

(1)按“文件”-“新建文件”,建立新画板。用“画圆”工具画一个圆A。B是圆上的电,可用以改变远的大小,Ctrl+H隐藏B点。(2)用“画线段”工具画线段CD,使点C在圆上,D在圆内。

(3)选择线段CD,做出线段中点E。(如图5.1.1)

图 5.1.1(4)过点E做线段CD的垂线,选定直线,显示直线的标签j。

(5)在空白处单击鼠标,释放对之间j的选择。用鼠标按住“画线段工具

不放开,显示出一排按钮,拖动鼠标到“画直线”工具处松开鼠标,“画线段”工具成为“画直线”工具。(如图5.1.2)

图 5.1.2(6)用“画直线”工具画直线AC,按Ctrl+K键,显示直线AC的标签k。(7)用“选择”工具单击之间j与k的交点处,做出交点F。

(8)用“选择”工具同时选中主动点C与被动点F,单击“构造”菜单里的“轨迹”,做出点F的轨迹--椭圆。

图 5.1.3 8

(9)按shift键,单击“显示”菜单里的“线型”-“粗线”选项,把椭圆设置成粗线。(如图5.1.3)

(10)同时选中之间j和点C,单击“构造”菜单里的轨迹,做出之间j的轨迹,它的包络是椭圆。(如图5.1.4)

图 5.1.4 5.2 小结

如以上制作过程,《几何画板》通过简洁方便的操作,直观的展示了椭圆的构造原理及其轨迹,其动态的图形功能,丰富的图像功能,无一不说明《几何画板》是一个优秀的数学教学辅助工具。

参考文献

文玉蝉,《几何画板》----21世纪的动态几何{J},玉林师范学院学报,2003,(03)。

杨超杰,浅谈“《几何画板》”及其在初中数学教学中的应用{J},中学生数理化(教与学),2009,(03)。

雒淑英,应用《几何画板》优化数学教学{J},科技信息(学术研究),2007,(30)。

丁佐宏,《几何画板》:高中数学教学的工具{J},新课程(新高考版),2008,(01)。

刘爱英,《几何画板》在高中数学教学中的应用例谈{J},中国现在教育设备,2010,(04)。

陈俊新,《几何画板》与数学教学-----课堂教学的小课件应用{J},考试周2007,万方数据库 www.xiexiebang.com、AN、AD,如图: 由于已经知道C、M两点的坐标,直线y=kx+d又经过C、M两个点,可得直线的解析式为y=x+3。D点是直线与X轴的交点,可得D点的坐标为(-3,0),又因为A点的坐标为(-1,0),所以AD=2。再看C、N两点,其坐标都已知,且纵坐标都为3,可得CN与X轴平行,那么自然就与AD平行了。再由C、N两点的坐标可得CN=2,因此AD=CN;在四边形CDAN中两边AD、CN平行且相等,所以它是一个平行四边形。

(3)这个问题比较抽象,因为点P是动点。我们现在借助几何画板对这种情况进行分析。因为A、B两点是二次函数与X轴的交点,自然关于函数的对称轴对称,两点到对称轴上任意一点的距离相等。故以对称轴上的点为圆心作圆,经过其中一个交点,必定经过另外一个点,因此考虑一个点就行了。

先在二次函数的对称轴上任找一点P,连接AP,再以P为圆心,AP为半径作圆,不断的拖动P点,看看这个圆是否能与直线CD相切。如下图:

从上图中可以看出:图a中P点比较靠近X轴,所作圆与直线CD没有交点;图b中,P点离X轴较远,所作圆与直线CD相交,有两个交点。试想:图a中的P点向上移动的到达图b所在的位置过程中,中间肯定有一个点让圆与直线CD相切,如图c所示。

那么应该怎样求P点的坐标呢!看右图:

过P点作直线CD的垂线,垂足为K,要想使圆P与直线CD相切,实际上PK这时是圆P的半径。即PK=PA时,圆P与直线CD相切。

在△DEM中三个点的坐标都知道,可得DE=EM,因此△DEM是一个等腰直角三角形。同样△PMK也是等腰直角三角形,有:

2KP2=MP2 又因为:AP2=AE2+PE2,MP=ME-PE,KP=AP;其中:AE=2;PE=1;ME=4。

可解得:PE=264,P点的坐标为(1,264)。

解到这里,此题看似已完,但如果你够细心,把P点再上下拖动,会发现在X轴的下方还在一个点能使点圆P与直线CD相切,如下图:

相同的方法,可解得:PE=(264)。由于P点在X轴的下方,所以P点的坐标为(1,-(264))。

因此满足这样的点P在对称轴上有两个点: 即P1(1,264);P2(1,-(264))。

从本题中不难看出,运用几何画板给我们在解决动点问题中提供了很大的帮助,在纸上或黑板上不容易发现的问题,在几何画板上只要轻轻拖动鼠标就很容易发现,从而有效的避免了漏解情况的发生。

几何画板在数学教学中应用远远不止这些,如画直观图,在黑板上画是很费时的,但在几何画板中可用鼠标一点完成。因此,只要我们熟练掌握几何画板功能,多实践,不断与数学教学相结合,相信就能使它在数学教学中发挥的作用。

【参考文献】

[1] 田延斌.《《几何画板》教学实例》.[2] 张淑俊.《《几何画板》在数学教学中的妙用》.

初中数学课件几何画板(精选12篇)

几何画板数学实验案例

《几何画板》在高中数学教学中的应用

几何教学心得体会(共13篇)

there be 教学课件(共7篇)

本文标题: 几何画板教学课件(共16篇)
链接地址:https://www.dawendou.com/jiaoxue/kejian/26725.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《几何画板教学课件(共16篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有