当前位置: 首页 > 教学资源 > 教案模板

中学数学教案模板圆(共7篇)

作者:baixinjei | 发布时间:2020-07-05 06:59:26 收藏本文 下载本文

第1篇:初三数学圆教案

初三数学 圆教案

一、本章知识框架

二、本章重点

1.圆的定义:

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质:

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论:

(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.

5.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点. 6.切线的判定、性质:(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系:

设⊙O 半径为R,点O到直线l的距离为d.

(1)直线和圆没有公共点直线和圆相离d>R.

(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距

(1)外离(2)含(3)外切(4)dR+r. 没有公共点,且的每一个点都在外部

内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r.的每个点都在内部有唯一公共点,除这个点外,内切d=R-r.

相交(5)有两个公共点R-r

10.两圆的性质:

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:,周长C=2πR.

圆心角为n°、半径为R的弧长.

圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为

.,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为【经典例题精讲】

例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?,母线长、圆锥高、底面圆的半径之间有

分析:要确定P点位置,我们可采用尝试的办法,在上再取几个符合条件的点试一试,观察P点位置的变化,然后从中观察规律. 解:

连结OP,P点为中点.

小结:此题运用垂径定理进行推断. 例2 下列命题正确的是()A.相等的圆周角对的弧相等 B.等弧所对的弦相等 C.三点确定一个圆

D.平分弦的直径垂直于弦. 解:

A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确. B.等弧就是在同圆或等圆中能重合的弧,因此B正确. C.三个点只有不在同一直线上才能确定一个圆. D.平分弦(不是直径)的直径垂直于此弦. 故选B.

例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D. 分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等. 解:

设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x. x+2x+3x+2x=360°,x=45°.

∴∠D=90°.

小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.

例4 为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.

分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行

合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解. 解:

小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型. 例5 已知

相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距. 解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设

与AB交于C,连结又∵AB=16 ∴AC=8. 在在故(2)若,则垂直平分AB,∴

中,中,.

. .

位于AB的同侧(如图23-9),设

.的延长线与AB交于C,连结∵垂直平分AB,∴.

又∵AB=16,∴AC=8. 在在故中,中,.

. .

注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.

三、相关定理:

1.相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)

说明:几何语言:

若弦AB、CD交于点P,则PA·PB=PC·PD(相交弦定理)

例1. 已知P为⊙O内一点,P任作一弦AB,设为。,⊙O半径为,过,则关于的函数关系式解:由相交弦定理得,即,其中 2.切割线定理

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

说明:几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB 例2. 已知PT切⊙O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。

解:设TD=,BP=,由相交弦定理得:即由切割线定理,理,∴

∴,(舍)由勾股定∴

四、辅助线总结 1.圆中常见的辅助线

1).作半径,利用同圆或等圆的半径相等.

2).作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明.

3).作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算.

4).作弦构造同弧或等弧所对的圆周角.

5).作弦、直径等构造直径所对的圆周角——直角. 6).遇到切线,作过切点的弦,构造弦切角. 7).遇到切线,作过切点的半径,构造直角.

8).欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径.

9).遇到三角形的外心常连结外心和三角形的各顶点.

10).遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点.

11).遇相交两圆,常作:(1)公共弦;(2)连心线. 12).遇两圆相切,常过切点作两圆的公切线.

13).求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边.

2、圆中较特殊的辅助线

1).过圆外一点或圆上一点作圆的切线. 2).将割线、相交弦补充完整. 3).作辅助圆.

例1如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为()

A.2 B.3 C.4 D.5 分析:连结OC,由AB是⊙O的直径,弦CD⊥AB知CD=DE.设AE=x,则在Rt△CEO中,则,(舍去).,即,答案:A.

例2如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于()

A.35° B.90° C.110° D.120°

分析:由弦切角与所夹弧所对的圆心角的关系可以知道∠AOB=2∠BAC=2×55°=110°.答案:C.

例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于()A. B.

C.

D.

分析:圆柱的侧面展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长;另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高,即

.答案:B.

例4 如图23-12,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,延长CM交⊙O于E,且EM>MC,连结OE、DE,求:EM的长.

简析:(1)由DC是⊙O的直径,知DE⊥EC,于是则AM·MB=x(7-x),即

.所以

.设EM=x,.而EM>MC,即EM=4.

例5如图23-13,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,PF分别交AB、BC于E、D,交⊙O于F、G,且BE、BD恰好是关于x的方程

(其中m为实数)的两根.

(1)求证:BE=BD;(2)若,求∠A的度数.

简析:(1)由BE、BD是关于x的方程的两根,得,则m=-2.所以,原方程为(2)由相交弦定理,得

.得,即

.故BE=BD.

.而PB切⊙O于点B,AB为⊙O的直径,得∠ABP=∠ACB=90°.又易证∠BPD=∠APE,所以△PBD∽△PAE,△PDC∽△PEB,则,所以,所以

.在Rt△ACB中,故∠A=60°.

第2篇:圆初中数学教案

(1)知识结构

(2)重点、难点分析

重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议

本节内容需要4课时

第一课时:圆的定义和点和圆的位置关系

(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆

(一));

(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.第二课时:圆的有关概念

(1)对(a)层学生放开自学,对(b)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;

(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹

条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.第一课时:圆

(一)

教学目标:

1、理解圆的描述性定义,了解用集合的观点对圆的定义;

2、理解点和圆的位置关系和确定圆的条件;

3、培养学生通过动手实践发现问题的能力;

4、渗透“观察→分析→归纳→概括”的数学思想方法.

教学重点:点和圆的关系

教学难点:以点的集合定义圆所具备的两个条件

教学方法:自主探讨式

教学过程设计(总框架):

一、创设情境,开展学习活动

1、让学生画圆、描述、交流,得出圆的第一定义:

定义1:在一个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆.固定的端点o叫做圆心,线段oa叫做半径.记作⊙o,读作“圆o”.2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.

从旧知识中发现新问题

观察:

共性:这些点到o点的距离相等

想一想:在平面内还有到o点的距离相等的点吗?它们构成什么图形?

(1)圆上各点到定点(圆心o)的距离都等于定长(半径的长r);

(2)到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系

问题三:点和圆的位置关系怎样?(学生自主完成得出结论)

如果圆的半径为r,点到圆心的距离为d,则:

点在圆上d=r;

点在圆内d

点在圆外d&r.“数”“形”

二、例题分析,变式练习

练习: 已知⊙o的半径为5cm,a为线段op的中点,当op=6cm时,点a在⊙o________;当op=10cm时,点a在⊙o________;当op=18cm时,点a在⊙o___________.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)

求证(略)

分析:四边形abcd是矩形

a=oc,ob=od;ac=bd

oa=oc=ob=od

要证a、b、c、d 4个点在以o为圆心的圆上

证明:∵ 四边形abcd是矩形

∴ oa=oc,ob=od;ac=bd

∴ oa=oc=ob=od

∴ a、b、c、d 4个点在以o为圆心,oa为半径的圆上.符号“”的应用(要求学生了解)

证明:四边形abcd是矩形

oa=oc=ob=od

a、b、c、d 4个点在以o为圆心,oa为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)

练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.a层自主完成)

练习2 设ab=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点a的距离等于2cm的点的集合;

(2)和点b的距离等于2cm的点的集合;

(3)和点a,b的距离都等于2cm的点的集合;

(4)和点a,b的距离都小于2cm的点的集合;(a层自主完成)

三、课堂小结

问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:

(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;

(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;

(3)注重对数学能力的培养

四、作业 82页

2、3、4.

此文章共有3页第 1 2 3 页

第3篇:初三数学 圆教案

一、本章知识框架

二、本章重点

1.圆的定义:

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P是否在⊙O上. 设⊙O的半径为R,OP=d,则有 d>r点P在⊙O 外; d=r点P在⊙O 上; d

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半. ②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半. 4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论:

(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.

5.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点. 6.切线的判定、性质:(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 7.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等. 8.直线和圆的位置关系:

设⊙O 半径为R,点O到直线l的距离为d.

(1)直线和圆没有公共点直线和圆相离d>R.

(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交dr),圆心距

.(1)外离(2)含(3)外切(4)dR+r. 没有公共点,且的每一个点都在外部

内有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部d=R+r.的每个点都在内部有唯一公共点,除这个点外,内切d=R-r.

相交(5)有两个公共点R-r

10.两圆的性质:

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 11.圆中有关计算: 圆的面积公式:,周长C=2πR.

圆心角为n°、半径为R的弧长.

圆心角为n°,半径为R,弧长为l的扇形的面积弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为面积为2πRl,全面积为

.,侧圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl,全面积为,母线长、圆锥高、底面圆的半径之间有

本文由:西安论坛http://www.xiexiebang.com.

(1)当n=2时,判断Cl+C2与C的大小关系;

(2)当n=3时,判断Cl+C2+ C3与C的大小关系;

(3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论.

提示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+ C3=C;(3)Cl十C2十…十Cn=C.

问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?

提示:1、实验:用硬币作初步实验;结果硬币一共转了4转.

2、分析:当你把动圆无滑动地沿着 圆周长的直线上滚动时,这个动圆是转 转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了.在我们这个题目中,那动圆绕着相当于它的圆周长的 的弧线旋转的时候,一共走过的不是 转;而是 转,因此,它绕过六个这样的弧形的时,就转了 转

《直线和圆的位置关系》的教学设计 太平溪九四中学 何风光 一、素质教育目标 ㈠知识教学点

⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。㈡能力训练点

⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。⒉在7.1节我们曾学习了“点和圆”的位置关系。⑴点P在⊙O上 OP=r ⑵点P在⊙O内OP<r ⑶点P在⊙O外OP>r 初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。㈢德育渗透点

在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。二、教学重点、难点和疑点

⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。三、教学过程 ㈠情境感知

⒈欣赏网页flash动画,《海上日出》

提问:动画给你形成了怎样的几何图形的印象?

⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

⒊活动:学生动手画,老师巡视。当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。⒋直线和圆的位置关系的定义。

①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。③直线和圆没有公共点时,叫做直线和圆相离。㈡重点、难点的学习与目标完成过程,⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。⒉提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

⒋学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。①直线ι和⊙O相交d<r ②直线ι和⊙O相切d=r ③直线ι和⊙O相离d>r 提问:反过来,上述命题成立吗? ㈢尝试练习⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离为 ⑴ 5.5cm; ⑵ 6cm; ⑶ 8cm 那么直线和圆有几个公共点?为什么?

⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。⒊经过以上练习,谈谈你的学习体会。

强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!㈣例题学习(P104)

在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

⑴ r=2cm ⑵ r=2.4cm ⑶ r=3cm ⒈学生独立思考后,小组交流。

⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢? ⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义.⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求? 学生讨论,并用z+z超级画板的变量动画引导。㈣话说收获:

为了培养学生阅读教材的习惯,请学生看教材P.103—104,从中总结出本课学习的主要内容有: 四、作业 P105 练习2 P115习题A 2、3

《直线和圆的位置关系》的教学设计 太平溪九四中学 何风光 一、素质教育目标 ㈠知识教学点

⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。㈡能力训练点

⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。⒉在7.1节我们曾学习了“点和圆”的位置关系。⑴点P在⊙O上 OP=r ⑵点P在⊙O内OP<r ⑶点P在⊙O外OP>r 初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。㈢德育渗透点

在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。二、教学重点、难点和疑点

⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。三、教学过程 ㈠情境感知

⒈欣赏网页flash动画,《海上日出》

提问:动画给你形成了怎样的几何图形的印象?

⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

⒊活动:学生动手画,老师巡视。当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。⒋直线和圆的位置关系的定义。

①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。③直线和圆没有公共点时,叫做直线和圆相离。㈡重点、难点的学习与目标完成过程,⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。⒉提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

⒋学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。①直线ι和⊙O相交d<r ②直线ι和⊙O相切d=r ③直线ι和⊙O相离d>r 提问:反过来,上述命题成立吗? ㈢尝试练习⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离为 ⑴ 5.5cm; ⑵ 6cm; ⑶ 8cm 那么直线和圆有几个公共点?为什么?

⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。⒊经过以上练习,谈谈你的学习体会。

强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!㈣例题学习(P104)

在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

⑴ r=2cm ⑵ r=2.4cm ⑶ r=3cm ⒈学生独立思考后,小组交流。

⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢? ⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义.⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求? 学生讨论,并用z+z超级画板的变量动画引导。㈣话说收获:

为了培养学生阅读教材的习惯,请学生看教材P.103—104,从中总结出本课学习的主要内容有: 四、作业 P105 练习2 P115习题A 2、3

第6篇:高二数学圆教案

竞赛讲座09

-圆

基础知识

如果没有圆,平面几何将黯然失色.

圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.

圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何著名的几何定理”,“共圆、共线、共点”,“直线形” 将构成圆的综合问题的基础.

本部分着重研究下面几个问题: 1.角的相等及其和、差、倍、分; 2.线段的相等及其和、差、倍、分; 3.二直线的平行、垂直; 4.线段的比例式或等积式; 5.直线与圆相切;

6.竞赛数学中几何命题的等价性.

命题分析

例1.已知A为平面上两个半径不等的⊙O1和⊙O2的一个交点,两圆的外公切线分别为P1P2,Q1Q2,M

1、M2分别为P1Q

1、P2Q2的中点,求证:O1AO2M1AM2.

例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形. 例3.延长AB至D,以AD为直径作半圆,圆心为H,G是半圆上一点,ABG为锐角.E在线段BH上,Z在半圆上,EZ∥BG,且EHEDEZ,BT∥HZ.求证:

21TBGABG.

3例4.求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等. 例5.设A是△ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T.证明:AUTBTC.

例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作⊙O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ∥NP.

例7.⊙O1和⊙O2与△ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P.求证:直线PA与BC垂直.

例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过

⌒⌒D,E,M的圆在E点的切线分别交直线BC、AC于F,G.已知

AMCEt,求(用t表ABEF示).

例9.设点D和E是△ABC的边BC上的两点,使得BADCAE.又设M和N分

1111. MBMDNCNE例10.设△ABC满足A90,BC,过A作△ABC外接圆W的切线,交直线BC于D,设A关于直线BC的对称点为E,由A到BE所作垂线的垂足为X,AX的中点为Y,BY交W于Z点,证明直线BD为△ADZ外接圆的切线. 别是△ABD、△ACE的内切圆与BC的切点.求证:例11.两个圆1和2被包含在圆内,且分别现圆相切于两个不同的点M和N.1经过2的圆心.经过1和2的两个交点的直线与相交于点A和B,直线MA和直线MB分别与1相交于点C和D.求证:CD与2相切.

例12.已知两个半径不相等的⊙O1和⊙O2相交于M、N两点,且⊙O

1、⊙O2分别与⊙O内切于S、T两点.求证:OMMN的充要条件是S、N、T三点共线.

例13.在凸四边形ABCD中,AB与CD不平行,⊙O1过A、B且与边CD相切于点P,⊙O2过C、D且与边AB相切于点Q.⊙O1和⊙O2相交于E、F,求证:EF平分线段PQ的充要条件是BC∥AD.

例14.设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行.点P为线段AB与CD的垂直平分线的交点,且在四边形的内部.求证:A、B、C、D四点共圆的充要条件为SPABSPCD.

训练题

1.△ABC内接于⊙O,BAC90,过B、C两点⊙O的切线交于P,M为BC的中点,求证:(1)AMcosBAC;(2)BAMPAC. AP⌒⌒⌒CA,AB的中点,BC2.已知A,B,C分别是△ABC外接圆上不包含A,B,C的弧BC,分别和CA、AB相交于M、N两点,CA分别和AB、BC相交于P、Q两点,AB分别和BC、CA相交于R、S两点.求证:MNPQRS的充要条件是△ABC为等边三角形.

CA分别 交于点D和E,3.以△ABC的边BC为直径作半圆,与AB、过D、E作BC的垂线,垂足分别为F、G.线段DG、EF交于点M.求证:AMBC.

C内的旁切圆与AB相切于E,4.在△ABC中,已知B内的旁切圆与CA相切于D,过DE和BC的中点M和N作一直线,求证:直线MN平分△ABC的周长,且与A的平分线平行.

5.在△ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F.在BC边上取点P使得3BPBC.求证:BFP1B. 26.半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M(MBMA,MCMD).设K是△AOC与△DOB的外接圆除点O外之另一交点.求证:MKO为直角 .

7.已知,AD是锐角△ABC的角平分线,BAC,ADC,且cosco2s.求证:AD2BDDC.

8.M为△ABC的边AB上任一点,r1,r2,r分别为△AMC、△BMC、△ABC的内切圆半径;1,2,分别为这三个三角形的旁切圆半径(在ACB内部).

求证:r112r2r.

9.设D是△ABC的边BC上的一个内点,AD交△ABC外接圆于X,P、Q是X分别到AB和AC的垂足,O是直径为XD的圆.证明:PQ与⊙O相切当且仅当ABAC.

10.若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF,连CD,DE分别交AB于X,Y,则MXMY.

11.设H为△ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X.证明:EX∥AP.

12.在△ABC中,C的平分线分别交AB及三角形的外接圆于D和K,I是内切圆圆心.证明:(1)111CIID1. ;(2)IDIKCIIDIK

第7篇:认识圆数学教案设计

《认识圆》数学教案设计模板

一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。首先对每一个课题的教学内容要有一个整体的把握。下面就是我给大家带来的《认识圆》数学教案设计,希望能帮助到大家!《认识圆》教案(一)教学目标

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。 4.培养学生观察、分析、抽象、概括等思维能力。教学重难点 教学重点

在动手操作中掌握圆的特征,学会用圆规画圆的方法。教学难点

理解圆上的概念,归纳圆的特征。教学工具 课件 教学过程

一、活动一:演示操作,揭示课题 课件出示“大家都来当裁判喽!” 演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。

让学生初步感知圆在生活中的应用。二、活动二:动手操作,探究新知

(一)教师让学生举例说明周围哪些物体上有圆。(二)认识圆的各部分名称和圆的特征。1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的? 教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。教师提问:折过若干次后,你发现了什么? 仔细观察一下,这些折痕总在圆的什么地方相交? 教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么? 教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。板书:半径

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件? 在同一个圆里可以画多少条半径? 所有半径的长度都相等吗? 教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方? 教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。板书:直径

教师提问:根据直径的概念同学们想一想,直径应具备什么条件? 在同一个圆里可以画出多少条直径? 自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗? 教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢? 如何用字母表示这种关系? 反过来,在同一个圆里,半径的长度是直径的几分之几? 教师板书:在同一个圆里,直径的长度是半径的2倍。(三)反馈练习。

1、P58的“做一做”第1、3、4题 2、练习十四的第2、3题(四)圆的画法。

1、学生自学,看书57页。 2、学生试画。

3、学生通过试画小结用圆规画圆的方法,注意的问题。 4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5、学生练习

P58的“做一做”第2题(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置? 教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办? 三、全课小结

这节课我们学习了什么?通过这节课的学习你有什么收获? 四、作业

练习十四的第1题 课后习题

练习十四的第1题。《认识圆》教案(二)教学目标

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。 教学重难点

教学重、难点:1、圆的特征。2、准确画圆3、同一个圆里半径与直径的关系。

教学过程

一、师生谈话,导入新课 课件出示图:

师提问:同学们看,这是什么图形?在我们的生活周围,你还知道哪些物体的形状是圆形的? 学生举例说。

(硬币、茶杯盖的形状、玻璃器皿的外形等等)课件出示图,这些都是由什么图形构成的? 师:现在我们来做一个游戏:老师这里有一个布口袋,里面有很多的东西。我请大家来摸一个圆形?看谁能一下子摸出来。

指名学生上台操作。

提问:你是怎么判断出来的?学生回答后,教师提问:那么,什么叫圆呢?它与我们以前学过的平面图形有什么不同? 学生回答后,教师进行小结:圆是平面上的一种曲线图形。二、动手操作,研究特征

师:刚才大家已经认识了圆,那么,想不想把它画出来看一看呢?请你在白纸上画一个圆。

学生自由画,稍后,教师讲评学生的作业:说说你是怎么画的?用了什么方法? 比较一下,谁的方法画的圆比较好?大家一致同意用圆规的方法比较精确。教师讲解画圆的方法。

现在就请每个同学用圆规在第二张白纸上画一个圆。学生开始操作,几分钟后,学生全部完成了作业。老师让大家四人一组,把四个人的圆放在一块,相互欣赏一分钟,可以说一句表扬的话。

师:欣赏完了刚才四个同学画的圆以后,你发现四个人的作品有什么不一样啊? 学生说:我发现了四个圆的大小不一样,画在纸上的位置也不一样。老师提问:那么,你们知道为什么圆的位置会不一样? 生说:我们把圆规的针尖放在纸的位置不一样。

师:对呀。你知道这个点叫什么吗?它就是圆心。找出自己画的圆的圆心。并写上字母O。

师:现在大家都明白了,是谁决定了圆的位置? 那么,又是谁决定了圆的大小呢? 学生讨论后,得出了圆规两只脚拉开的大小就决定了圆的大小。

师:如果要用一条线段表示圆规两只脚间的距离,小组讨论一下,该这样表示。

教师在黑板上画的圆上任意画一条线段,让学生判断是否正确。提问:从圆心到圆上任意一点的线段叫什么? 再画几条线段,这是半径吗? 那么,现在你们明白了是什么决定了圆的大小。教师进行小结:在同一个圆内,半径有无数条,所有的半径都相等。6、用圆规画一个半径是2厘米1.5cm的圆。同桌评价一下是否正确。7、玩一玩:刚才老师给大家发了一个圆形的纸片:老师忘了画圆心,你能帮助老师给找出来吗? 生:我把纸条对折,发现了有一条折痕,所有的折痕集中在一点,这一点就是圆心。师:你们同意吗?折痕叫什么名称呢? 师:请大家看书找出这个折痕叫什么?在此基础上,引出直径的概念。师:在自己画的圆中,画出几条直径,看看直径有什么特点。它与半径有关系吗? 学生自由操作,同桌学习交流:得出了在同一个圆内,直径有无数条,所有的直径都相等,而且直径是半径的两倍(半径是直径的一半)。

用字母怎么表示呢?学生继续看书。三、巩固应用

1、口答(填一填,我能行!)2、判断对错,并说明理由。

①在同一个圆中,从圆心到圆上任意一点的距离都相等。()两端都在圆上的线段叫做直径。()③画一个直径为4厘米的圆,圆规两脚间的距离为4厘米。()④直径3厘米的圆比半径2厘米的圆大。()⑤直径是半径的2倍。()3、操作:你能量出一元硬币的直径是多少吗?四人小组共同进行,看看你们能想出几种方法? 布置作业: 实践:

1.体育节要到了,铅球裁判员王老师犯愁了:铅球比赛场地上的圆圈还没画呢,圆圈的直径是2.35米,可没有这么大的圆规怎么办呢?同学们,你们能帮帮他吗?课后请四人小组讨论好方法并到操场上去实际做一做。

2.大象想在一个边长20厘米的正方形铁皮上剪出一个最大的圆用作铁皮水桶的底,你们能既迅速又准确做到吗?课后试一试。

四、课堂总结

通过这节课,你学会了什么?你有什么收获?

圆的面积的数学教案

中学数学教案模板

人教版中学数学教案模板(共11篇)

广西中学数学教案模板

教师中学数学教案模板

本文标题: 中学数学教案模板圆(共7篇)
链接地址:https://www.dawendou.com/jiaoxue/jiaoan/71607.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《中学数学教案模板圆(共7篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有