当前位置: 首页 > 教学资源 > 教学设计

循环小数教学设计

作者:112 | 发布时间:2021-07-04 06:17:02 收藏本文 下载本文

第1篇:循环小数教学设计

循环小数教学设计

循环小数教学设计

教学目标:

1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。

2.初步认识有限小数和无限小数。

3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。

教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数.教学准备:教师在小黑板上准备多题练习题.教学过程:

一.

创设情景 师:你们最喜欢星期几啊?

师:一个星期七天的出现有什么规律?

引导学生:一个星期的星期一到星期日总是不断地出现。(板书:不断、出现)

师:有规律吗?

生:是按照从“星期一”到“星期日”的顺序重复出现的。(板书:重复)

1 / 7

循环小数教学设计

师:既然是不断地重复出现,那么出现的次数是有限的还是无限的? 师:像一个星期七天总是不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例

师:今天我们来研究数学里的循环。(引出课题)二.自主探究

(一)初步认识循环小数 师出示8.4÷4(用竖式计算)

师:这道题同学们算得快又对,那么敢挑战下面两道题吗?(出示 10÷3,49÷22)

让学生说说你有什么发现。师:为什么会重复出现“3”呢?

师:这么说10÷3的商里有多少个“3”呢? 师:既然是无数个,可以怎么表示呢?

生:我认为可以用省略号表示有无数个“3”。(板书:10÷3 = 3.3333……)师:第3题的商又有什么特点呢?(除到商是五位小数时,要求停笔)师:想一想,如果继续除下去,商会怎样?

2 / 7

循环小数教学设计

生:商会依次不断地重复出现“2”和“7”。师:你是怎样想出来的呢?

生:因为余数重复出现“6”和“16”,所以商就会重复出现“2”和“7”。师:谁能说出这道题的商。生:49除以22等于2.22727等等。

师:“等等”用什么符号表示?能不能不写省略号?为什么?

生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多27。(板书商)

师:像这样的数就是循环小数。

练习一:(小黑板出示)能说出省略号表示的意思吗? 0.222……

(表示后面有无数的2)0.41616……

(表示后面有无数的16)0.72360360……

(表示后面有无数的360)师:有几个数字在重复? 让生比较这三个数有什么相同点和不同点?

小结:从某一位起,一个数字或几个数字,依次不断地重复出现。(根据学生的回答补充板书)

3 / 7

循环小数教学设计

师:请同学们看看书上写的与刚才说的还有什么不同? 师:书上为什么要强调从“小数部分”的某一位起呢?

生:这就是说循环小数是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不断地重复出现。(让生试着在草稿本上写几个循环小数)(二)循环小数的简便读写法 1.循环节

师:(指板演题)在“3.333……”中不断地重复出现的数字是哪一个?

(3)

在“2.22727……”中依次不断地重复出现的数字是哪几个?

(2、7)

师:在循环小数中,依次不断重复出现的数字叫循环节 师:同桌互相说说自己写出来的循环小数哪些数字是循环节。练习二:(说说下面的小数的循环节是谁?)7.232323……

4.84848

4 2、循环小数的简便记法

师:循环小数的一般写法是把循环节写出两遍或三遍,然后写上省略号。不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个圆点,这个点叫做循环点,如2.227。读作:二点二二七,二七循环。

4 / 7

循环小数教学设计

师:请同学们试一试。(1)写出3.333……的简便写法.(2)自己写出来的循环小数的简便写法。

(三)认识有限小数和无限小数

师出示练习三:再请同学们判断下面哪几个数是循环小数,为什么?

0.999……

5.02727……

6.306306……

3.212121

3.1415926……

0.547745……

(学生判断后,教师组织讨论)师:3.212121不是循环小数,那它是什么数呢?

师:在3.1415926……和0.547745……小数中,是不是循环小数呢?为什么? 生1:3.1415926……没有重复出现的数字, 所以它也不是循环小数。生2:在0.547745……小数中“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。师:那这三个数是什么数呢?

让生自学例九,后汇报交流你知道了什么? 师:那么是无限小数的,一定是循环小数吗? 让学生举例验证。

师:是循环小数一定是无限小数吗?

5 / 7

循环小数教学设计

(四)小结学习内容

师:今天我们学习了哪些新知识?谁能说一说。师:你能用今天所学知识说明这几道题的商吗?

出示: 2÷9 = 0.222……

5÷12 = 0.4166……

9÷55 = 0.16363……

三.巩固练习

1、判断题。(对的画“√”,错的画“×”)

(1)0.7777是循环小数。

(2)0.07是混循环小数。

(3)2.07 = 2.07

(4)1.3 > 1.333

(5)循环小数13.24324……可以写作13.24。

2、找数。在下列数中

(1)比1小,循环节是三位数字的纯循环小数有((2)比1大,循环节是一位数字的混循环小数有(10.101

3.212

0.07

0.414

(四)课堂作业: 练习七第7、8题。

6 / 7

(((((2.45)))))。)。0.101)

循环小数教学设计

(五)课堂小结与质疑 。

7 / 7

第2篇:循环小数教学设计

《循环小数》教学设计

潘玉环

教学目标:

1.使学生初步认识循环小数,知道什么是循环小数,以及循环小数的简便写法和读法。 2.初步认识有限小数和无限小数。

3.激发学生探究的欲望,培养学生观察、比较、分析、判断、抽象概括能力。 教学重点、难点:理解循环小数的意义,会用简便方法读写循环小数.教学准备:课件.教学过程:

一、创设情景

师:你们最喜欢什么季节? 师:你喜欢的季节还会出现吗? 师:四季的出现有什么规律?

师:像一年四季不断地重复出现的现象,我们把它叫做循环。(板书:循环)生活中还有象这样依次不断重复出现,无穷无尽的循环现象吗?你能举例

师:生活中有很多循环现象,数学中有没有这种现象呢?我们一起去找一找。(引出课题)

二、自主探究

(一)初步认识循环小数

1、先看算式1÷3

2、你说我写,看计算过程中你能发现什么?

3、师板书,在计算过程中引导学生发现1÷3这个算式的两个特点:1.余数重复出现“1”;2.商的小数部分连续的重复出现“3”。

4、师:像这样继续除下去能除完吗?

5、师:怎样表示这种个永远也除不完的商?这种商有些什么特点,就是我们今天要研究的问题,也是我们要认识的新朋友——循环小数

(二)自主探索循环小数

1.刚才我们已经发现了这个算式的特点,下面我们探讨一个问题,为什么上的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?

引导学生发现:当余数重复出现时,商就要重复出现:商是随余数重复出现才重复出现的。2.师:猜想一下,如果继续除下去,商会是多少?他的第四位商是多少,第五位呢?

学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现1,它的商也就重复出现3.师:是这样的吗?我们可以接着往下除来看看。验证。师:那么我们怎样表示1÷3的商呢?

引导学生说出可以用省略号来表示永远除不尽的商。

师:像5.333„这样小数部分有一个数字依次不断重复出现的小数,就是循环小数。

(三)进一步认识循环小数。

师:下面我们来继续研究循环小数,请同学们用竖式计算78.6÷11 学生先独立计算,教师课件出示: 1.这个算式能不能除尽? 2.它的商会不会循环?

3.如果循环它是怎样循环的? (学生计算,然后全班汇报)

师:你觉得这样的算式除到哪一位就可以不除了? 指导学生说出,只要余数重复了,就可以不除了。师:为什么?

引导学生说出:因为像这样的算式余数循环,商也跟着循环。师:你能标出这个算式的商吗?

师:下面我们来继续研究循环小数,请同学们用竖式计算1.5÷7 教师课件出示:

1.这个算式能不能除尽? 2.它的商会不会循环?

3.如果循环它是怎样循环的? (学生计算、然后全班汇报)

师:比较0.333„和7.14545„,0.2142857142857„你觉得这三个循环小数有什么不同?

师:像5.333„,7.14545„,0.2142857142857„,这样的小数都是循环小数。你能说出几个循环小数吗? 学生说,师板书。

师:观察这些循环小数,说说他们有什么共同之处? 学生汇报教师点拨。

刚才同学们讲的都有一定的道理,下面我们看看书上的结论。学生自由朗读。

课件出示:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。▲辨析概念

1.读懂了吗?老师来检验一下你们理解的情况,出示: 判断:

A、一个数,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。()B、一个数的小数部分,从某一位起,一个数字或者几个数字重复出现,这样的小数叫做循环小数。()2.通过刚才的判断,你认为概念中那些字是比较重要的,读出这几个字的重音,集体朗读一遍。请你判断下面那些数是循环小数,为什么?(课件)0.999…

5.02727…

6.306306…

3.212121

3.1415926…

0.547745…

四、自学“循环小数”的相应新知,并尝试应用。

(一)、认识有限小数和无限小数

师:3.212121不是循环小数,那它是什么数呢?板书:有限小数

师:在3.1415926„和0.547745„小数中,是不是循环小数呢?为什么? 师:那这三个数是什么数呢?板书:无限不循环小数

课件出示:小数部分的位数有限的小数是有限小数。小数部分的位数无限的小数是无限小数。请同学们说几个有限小数,再说几个无限小数。

(二)、认识循环节

一个循环小数的小数部分,依次不断重复出现的数字,有一个名字叫循环节。

课件出示:一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。你们能写出下面三个循环小数的循环节吗?

0.999„的循环节是()

5.02727„的循环节是()

6.306306„的循环节是()

(三)、循环小数的简写

1、我们认识了这么多的循环小数,你们认为写循环小数麻烦吗?

2、课本上为我们提供了一种简便的写法,大家想不想了解一下。

课件出示:写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。学生自学

3、学会了循环小数简写的方法了吗?好!我们来试一试。 把下面循环小数用简便方法写出来,并指导读的方法。7.44…

14.1414…

0.671671…

把循环小数的简便形式改写成一般形式,你会吗?

2.49=

7.518 =

42.512 =

六、巩固练习

一、下面的数中,哪些是循环小数?将它们表示用简便形式表示出来: 0.3757…

0.417417…

1.66666…

5.7234242… 3.161616…

4.3737 1.1380413804…

0.50505…

二、判断题。(对的画“√”,错的画“×”)

①一个小数从某一位数起,一个或几个数字依次不断重复出现的小数叫做循环小数。()②0.666„„是循环小数。()③0.7777是循环小数。()

④1.306306„„=1.306。()

⑤9.219219„„,循环节是921。()⑥0.07 是有限小数。()⑦循环小数是无限小数。()⑧无限小数是循环小数。()

三、根据实际需要,取它的近似数。

0.245

(保留两位小数)0.245

(保留三位小数)

四、比较下面两个数的大小。

0.33 〇

0.3

1.23 〇 1.233

1.45 〇 1.45

七、全课总结

通过这节课的学习,你有什么收获?

思考题、如果用A、B、C 表示不同的三个数字,如:A.BBCBBC•可以简写成什么数?这个小数的小数部分第一百位是什么?

第3篇:循环小数教学设计

教学内容:P27 例

8、例 9 教学目标:

1.通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2.理解有限小数,无限小数的意义,扩展数的范围。

3.培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学重点:

掌握循环小数、无限小数、有限小数的意义。

教学难点:

掌握循环小数的简便记法。

教学过程:

一、设疑自探

1.设疑引课。

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:„„这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2.初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:

1.余数总是“25”。

2.继续除下去,永远也除不完。

3.商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3.总结概括循环小数的意义。

其他除法算式会不会出现这种情况呢?请同学们算一算:28÷1878.6÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样?能除尽吗?(请生板演计算结果)

观察例

8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个„„。教师小结循环数的意义,(板书课题)。

二、质疑探究

(一)检查自学情况(学困生回答,中等生补充,优等生评价)

巩固练习:下列哪些是循环小数?并说一说理由。

0.999„52.52525„4.1677„3.212121„3.1415926„

学生评议。

三、质疑再探

(一)学生质疑

教师:针对本节课学习的知识,你还有什么疑惑请提出来,大家一起研究。也可以提出由本节所学知识联想到的问题。

(二)解决学生提出的问题

(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)

除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333„还可以写作5.3,7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525„可能出现问题52.5252.52552.52,师生共同辨析)

看书P27-28第一自然段,及了解“你知道吗?”

理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:

1、商的小数部分位数是有限的,叫做有限小数;

2、商的小数部分位数是无限的,叫做无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

四、运用拓展

(一)学生自编习题

1.让学生根据本节所学知识,用适当题型编写1~2道练习题。

2.展示学生高质量的自编习题,交流解答。

(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷111.08÷3.313.25÷10.6

(三)全课总结

1.学生谈学习收获

教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。

2.学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。

课后反思:

练习中出现了以下几种常见错误:

1.在竖式中在第一个循环节上也打了循环节的圆点。

2.在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。

3.在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2。01212„„学生除到2。0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。

第4篇:循环小数教学设计

一、教学内容:人教版五年级数学上册《循环小数》

二、教学目标:

1、知识与技能:

使学生理解循环小数、有限小数、无限小数的意义.掌握循环小数的两种表示方法.2、过程与方法:经历循环小数的认识过程,体验探究发现的学习

3、情感态度与价值观:让学生感受数学的美与乐趣,激发探究的欲望,初步渗透集合思想。

教学重点:理解循环小数的意义。

教学难点:循环小数的表示方法。

三、学情分析:五年级的学生思维活跃,上课时能够专心听讲,能够

主动的发言,善于提问。学生在生活中已感受过循环、重复的现象

经历过将事物进行分类、整理的活动,具备了初步的比较、分类、归纳、概括等能力,为今天的学习打下了良好的基础。

教学流程:

一、活动引入,体验”循环”

1、学生列队踏步,踏步口令有什么特点?(板书:121121„ 无限 有限)

2.找规律,猜图形。(板书:依次不断的重复出现)

3、师:依次不断的重复出现,用一个词来说明?也就是“循环”出现。你在生活中遇到过这种循环现象了吗?(举例说说)

二、新知探究

不断重复的现象生活中还有很多,在计算中我们也会遇到

初步认识循环小数

课件出示例题:王鹏赛跑图

男生400米谁跑得最快?成绩如何?王鹏平均每秒跑了多少米?

(1)学生描述场景信息,根据信息,你能列出什么算式呢?400÷75(2)学生独立计算,指名板演。引导学生思考并回答:让学生通过实际计算,发现这道题无论除到小数点后面多少位,都除不尽。通过竖式计算,你发现了什么问题?(除不尽)

②这道题商的小数部分和余数有什么规律和特点?(商的小数部分不断的重复出现3,而余数重复不断的出现25)

③如果我们不断地除下去,它的商是多少?比如第5位是多少?第20位商是多少?第100位商是多少?(不管是哪一位,只要余数重复出现25,商就会重复出现3。)这样的除法算出的商应该表示为:400÷75=5.333„„

问题:省略号表示什么?让学生说出“„”表示的含义。不写行吗?

2、出示例9:先计算,再说一说这些商的特点。

28÷18=

78.6÷11=

(1)先让学生独立列竖式计算。

(2)观察这道题,有什么相同点?(这两题的相同点是总也除不尽。)这两道题的不同点是什么?(前一道题商中是一个数字“5”不断重复出现,而后一道题,商中二个数字”6 3”在依次不断重复出现。)

3、教学循环小数的意义。

(1)谁能用自己的话说一说什么叫“循环小数”?(2)请大家写出几个循环小数。

(3)根据循环小数意义判断下面的数哪些是循环小数。1.5222„„

0.1929292

5.314123„„

8.41616„„

讨论;为什么0.1929292和5.3141523„„不是循环小数?

你认为判断一个数是不是循环小数要注意那些问题?

4、自主学习,学会记法。

师:循环小数除了这种一般记法之外,还有一种简便记法。下面请同学们自学书中28页下面的《你知道吗》。把你认为有关的重要内容圈画出来,时间3分钟。

(1)什么是循环小数?你觉得重点词语有哪些?(2)什么是循环节?

(3)怎样简便写出循环小数?(4)怎样读循环小数?

学生反馈交流,根据学生回答,教师划出重点词并板书简写。5教学有限小数和无限小数。(1)计算下面两题:

15÷16

1.5÷7 (2)讨论:这两题的商小数部分的位数有什么不同?(15÷16能除尽,商的小数部分的位数是有限的。1.5÷7除不尽,商的小数部分的位数是无限的。)想一想:两个数相除,如果不能得到整数商,所得的商会有哪些情况?(3)教师:两个数相除,如果不能得到整数商,会有两种情况。一种情况:除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限,也就是被除数能够被除数除尽。另一种情况:除到小数部分后,余数不断地重复出现,商也不断地重复出现,商里小数部分的位数是无限出现的。

小数部分的位数是有限的小数,叫有限小数,(绿色圃中小学教育网 教师举15÷16=小数部分的位数是无限的小数,叫做无限小数。教师举1.5÷7 =循环小数是无限小数,学生举例,强调无限小数不一定都是循环小数。

(4)练习:计算下面各题,说一说哪些题的商是有限小数,哪些题的商是无限小数。

10÷9

1.332÷74

23÷3.3

三、巩固练习

1、下列说法对吗? (1)一个数中有一个数字或几个数字重复出现,这样的数叫循环小数。()

(2)8.3232是循环小数。()

(3)循环小数是无限小数,无限小数也是循环小数。()

(4)0.54848„„保留两位小数是0.54。()

2、下面的循环小数,请用简便记法写出来。 3.28585„„()

0.02929„„ ()13.06969„„()

23.2323„„ ()

3、练习书法,小明把“我们在阳光学校健康成长”这句话依次反复写,第100个字应写什么字?

四、从质疑问难中,畅谈收获

通过这节课的学习,你有什么收获?或什么疑问?

循环小数有趣又奇妙,更多奥秘等着我们去探索去发现.4、效果检测

学生在学习掌握循环小数的概念之后,能独立判断出循环小数,也能弄清有限小数和无限小数的区别。但对循环小数的两种表示方法还有些模糊。

板书设计:

循环小数

有限小数:小数部分的位数是有限的小数。

无限小数:小数部分的位数是无限的小数。

一个数的小数部分从某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字叫做循环节。写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末尾上面各记一个小圆点。

本节课设计与改进的教学反思

循环小数这部分内容概念较多,又比较抽象,是教学的一个难点。以前的教学中,我总是讲得多讲得细,总担心学生没听懂,参加国培学习以后,我认真审视自己教学工作中出现的问题,要想真正把课堂当作学生自己发展的天地,就要与学生站在一个平台上互动探究,在平等的交流中倾听,在学生激烈的争辩中做好引导,学生就会越来越喜欢数学课了。

1、迈好第一步

要想学生在数学课上有收获,学生就要有积极的学习状态。课始,让学生从熟悉的踏步生活现象中初步感知循环的特点,抓住了学生的注意力,自然地引入新知,接着我又让学生例举生活中有关循环现象的例子。不仅让学生体会数学与生活的密切联系,也让学生感知什么是“依次不断的重复出现”。什么在循环?分解了教学难点。

2、注重概念的生成过程。

以前的概念教学主要是通过教师的讲解和学生的记忆,这样容易造成学生被动地学习,使学生的思维有依赖性和惰性,不利于学生的后续学习和发展。在教学《循环小数》时,我引导学生去主动探究数学中的问题,通过让学生自己观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。在学生汇报交流自己的想法时,又提出问题让学生进一步思考。“怎么样来判断循环小数?”“为什么要加省略号?”两种循环小数写法有什么不同?哪种更简便?同时抓住概念中的关键词引导学生逐个理解之后,再对要点进行概括,从而使学生对循环小数概念有了一个全面、完整的认识。

3、恰当地处理教材

学生在探究循环小数的特点时,竖式计算对学生不是新知,但学生必须运用这个模型来研究循环小数,教学中,我让学生尝试自己计算,并引导学生观察做到哪一步就可以不做了,把重点放在引导学生观察竖式和发现规律上,让学生对循环小数概念中的关键词有了更为具体的理解和认识。

本节课依据新的《课程标准》及新的教学理念。注重了创设问题情境,激发学生学习兴趣。引导学生自主探索,参与知识形成的全过程,充分体现了教师主导,学生主体的学习氛围,使全体学生在数学学习中都得到了不同的发展,整体教学效果较好。不足之处是学生不能很明确地确定循环小数的循环节是什么,说明在培养学生的观察能力上还有欠缺,今后还需要在这方面再努力。

第5篇:《循环小数》教学设计

《循环小数》教学设计

———北师大版四年级第八册

教材分析:

本教学内容是九年义务教育小学数学第八册(北师大版)第69~70页的内容。循环小数是学生较难地理解和表述的一个概念,特别是表达其意义的一些抽象说法,学生难以理解。教材通过除法的实例,引导学生在计算过程中发现商的小数部分会有一个或几个数字不断重复出现,观察比较,使学生掌握循环小数的特征,理解循环小数的意义。通过阅读教材“数学万花筒”部分,认识循环节,了解循环小数的简便写法。教学目标:

(一)知识与技能:

1、通过计算马拉松运动选手的速度,发现余数和商的特点,知道什么是循环小数。

2、会根据需要对循环小数取近似值。

(二)过程与方法:

经历讨论、交流的学习活动,培养学生的分析能力和概括能力。

(三)情感与态度:

体会数学来源于生活,应用与生活。

教学重点:发现余数和商的特点,知道什么是循环小数。教学难点:理解循环小数的意义,会表示循环小数。教学过程:

师:同学们,上课前咱们来玩个游戏。这个游戏的名称叫“比比划划”。师:老师看看谁的反应最快,哪组的动作最整齐。小游戏:

(1)× ××

× ××

× ××

× ××

(2)剪刀石头布 剪刀石头布 剪刀石头布(3)左左右右左左

左左右右左左

左左右右左左 动作:在相应的位置击掌两次。

(设计意图:从学生喜爱的游戏导入,通过有规律的游戏让他们充分感知“按一定顺序”、“重复出现”的含义,从而对数学产生亲切感,进而为下面的学习铺平道路,是突破教学重、难点的有效手段。)

一、寻找规律 认识循环

1、师:刚才,我们课前玩了游戏,现在静下心来回忆一下,我们玩了哪些游戏?(出示三组游戏)从游戏中,你们发现这些游戏有什么特点?

2、师:象这样的现象叫(循环)板书:循环 师:生活中,还有哪些这样的现象呢?

(如:每年12个月循环,每周七天循环,白天、黑夜循环,十二生肖循环,四年一闰循环)

3、师:大家举了这么多例子,那你能用自己的话说说“循环”的意思吗?(板书:按顺序

不断

重复出现)

4、师:大家说得很好!循环就是按顺序不断重复出现的现象。数学中有一种数,它也有循环现象,这节课我们就一起来研究这个问题。

(设计意图:从“循环”入手,以寻找生活中的循环现象,过渡到数学中的循环现象,帮助学生建立关于“循环”的知识结构,为学生理解概念做好铺垫。)

二、指导自学

主动探索

(一)创设情境,提出问题

师:今年3月,在我们厦门举行了一场盛大的体育赛事,是——(国际马拉松赛)。近2万名选手奔跑在美丽的环海赛道,成为厦门一道靓丽的风景线。师:老师这搜集了其中2名运动选手的比赛资料: A选手:3小时跑了41km B选手:1.1小时跑了14.1km 师:根据提供的资料,你能提出什么数学问题?

(根据学生回答出示):2位选手平均每小时分别跑多少千米?(点击课件)列式: 41÷3 14.1÷1.1(设计意图:灵活运用06年厦门国际马拉松赛这个教学资源,从比较两位运动选手的速度中促进学生有的放矢地探索新知。)

(二)进行计算,自主讨论

师:看来,大家都关注这两位选手的速度,你们动手算算吧。(两名同学上台来板演,其他同学做在练习本上)教师巡视学生计算情况。

(当有学生提出遇到困难除不下去时)师:你们遇到什么问题了?(除不尽)

师:为什么除不尽,那你们发现了什么啊?(停几秒)

好,你们就带个问题去探讨探讨。

1、观察商和余数的规律

师:刚才,老师看到各小组都讨论得很热烈,哪个同学愿意代表小组来是说说。

41÷3=

14.1÷1.1= 余数重复出现2

余数重复出现9和2 商就重复出现6

商就重复出现8和1 师:同学们观察得真仔细,发现了余数重复,商必然重复出现。

2、认识商的表示方法 师:老师把这题的商写上去 板书:41÷3=13.666 生:错了!

师:错了,为什么啊?(因为商里将有无数个6,应该是13.666„„)师:第二题的商呢?(指名板演)师:这两个“„„”表示又有什么区别? 小结:

师:能说说下面各数中“„”表示什么吗?

0.41333„„

5.6363„„

9.8315315„„

(设计意图:学生是学习的主体,当他们遇到新问题——除不尽时,教师不是直接告诉学生现成的规律或答案,而是让他们自己去观察、讨论、分析、理解,发现余数和商重复出现,总也除不尽。这样不仅能培养学生的探究能力,而且能点燃他们创新思维的火花。)

(三)汇报交流,理解概念

1、发现循环小数的特点

师:象这些数,(指着板书)它们都有循环现象,我们把它们叫做“循环小数”。板书课题:循环小数

师:这些循环小数都有什么共同的特点呢?(让学生充分地说)师:大家真棒!靠自己的观察与发现,知道了什么是循环小数。

出示:一个小数的小数部分,从某一位起,一个数字或几个数字按顺序不断地重复出现。(设计意图:通过小组间的相互交流与启发,说说循环小数的特点,培养学生的运用数学语言的能力。)

2、会判断循环小数

师:现在,你们会判断循环小数了吗?好,请每个同学都拿出练习完成第一题的判断。

0.666„„

0.1875875„„(不断重复出现的数字是几?)

4.252525

(为什么不是?)

3.1415926„„ 0.547745„„

3.023023„„(辩论:不断重复出现的数字是“302”还是“023”)

(设计意图:循环小数的内涵十分丰富,需要学生理解的概念多而集中,且易混淆,需精心设计练习,加强比较、判断,使学生进一步巩固强化循环小数的有关概念,并将知识转化为智能。)

2、自学简便写法

师:如果每个循环小数都这样写,你觉得怎么样?(太麻烦)那么就请你以0.1875875„„为例设计一种循环小数的表示形式,要求循环节只能写一次,还要能表示依次不断重复出现的循环意思。每组评出一种最简明的写法。(展示各组同学的写法)

师:大家的设计很有创意,也能表示循环小数的意思,老师祝贺你们!循环小数有一种国际上认可了的表示形式,你们想知道吗?

注:如有学生写出来,问:你是怎么知道的?(自学,看书)

师:很好!看书自学是一种很好的学习方式。现在也请同学们自学课本第70页“数学万花筒”,看看书上是怎么说的。反馈:

师: 通过看书,你们知道了些什么?还可以怎么写呢,谁来试试!(指名上台来改写)0.41333„„

写作:

5.6363„„

写作:

9.8315315„„

写作: 师:大家会写了,那怎么读呢?

4、取近似值的方法

师:在实际生活中,我们常常需要对循环小数取近似值,你能用近似数表示这两名运动员的速度吗?(得数保留一位小数)

出示:13.666„≈13.7

12.8181„≈12.8 师:刚才,我们用(四舍五入法)求近似值。

三、结合实际

解决问题

1、每瓶矿泉水0.9元,小东有5元钱,他可以买几瓶?

(5÷0.9=5.555„)

小结:结合生活实际,这题的结果对循环小数取近似值要用“去尾法”。

2、张大爷新家装修,他想买窗帘来装饰一下。同一款窗帘,美欣公司报价:每米33.45元,美意公司报价:3米100元。你能帮张大爷推荐一下,选用哪家公司的比较合算?你是怎么想的?

小结:结合生活实际,这题的结果对循环小数取近似值要保留两位小数,因为人民币的最小单位是分。

(设计意图:数学来源于生活,应用于生活。《数学课程标准》指出:“要重视培养学生的创新意识和实践能力。”所谓实践能力,就是指学生能运用已学的数学知识解决一些简单的实际问题。上述两题,立足于学生切身的生活经验,引导学生会根据需要对循环小数取近似值。通过问题的解决,不仅加深了学生对新知的理解,还使他们对循环小数产生亲切感,感受到数学就在身边。)

3、师:大家的表现不错,积极动脑,解决了生活中的数学问题。老师还想知道咱们班哪个同学对循环小数的感觉最好,玩个游戏吧:小小投球手,有兴趣吗?

游戏规则:只要对应屏幕上出现的循环小数,在6个球中选中一个正确的球即可,老师看看谁的命中率高!

牌子上的数: 0.79494„ 0.82121„ 0.794794„ 0.82111„..........6个球:0.821 0.794 0.821 0.821 0.794 0.794

四、深化理解

拓展延伸

1、猜谜:“岁岁元宵,今又元宵”打一数学名词。(循环节)

2、1÷7的结果是一个循环小数,小数点后面第100位上的数字是几? (1)观察竖式过程,你知道商的循环节是几吗?你是怎么发现的?(2)独立思考,动手算算。(3)指名上台来当“小老师”。

3、142857 这个数是由1÷7所形成循环小数的循环节而得的。下面是 142857 乘以 2的结果:

2×142857=285714 3×142857= 4×142857= 5×142857=

6×142857=

结果是

1、4、2、8、5、7 这六个数字依原來的次序循环排列,只是开头的数字变动而已,我们称这种数为循环数。请抢答:3×142857,4×142857,5×142857,6×142857的积是多少。(设计意图:猜谜语、抢答循环数,把课内知识向课外延伸,进一步拓宽学生的知识视野,提高思维能力。)

五、提出质疑

结束全课

师:同学们,今天你们学得非常投入。剩下的时间看看书,相互说说这节课你学到了哪些知识,你还有什么问题或其他发现,把你的发现或问题拿出来大家分享。

第6篇:循环小数教学设计

循环小数教学设计

教学内容:教材第27~28页,练习五第1~5题。教学目标:

1.使学生初步认识循环小数、有限小数和无限小数,能用简便记法表示循环小数,能用循环小数表示除法的商,并能正确区分有限小数和无限小数。

2.让学生经历猜想、验证的探究过程,培养学生的探究精神和意识。

3.学生能在学习过程中获得成功体验,培养学生积极的数学情感。

教学准备:多媒体课件,视频展示台。教学过程:

一、创设情景,引入课题

师:我们这节课来探索一些有趣的规律。先听老师讲一个故事,看你能从这个故事中发现什么规律?

(教师讲故事:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,山上有个洞,洞里住着老猴子和小猴子。一天,老猴子对小猴子说:从前有座山,……)

生:这个故事总是在重复同一个内容。

师:不错!大家已经发现这个故事的一个特点了。板书:不断重复

师:谁能根据这个特点接着老师的故事继续往下讲? 让几个学生继续讲这个重复的故事。

师:照这样讲下去,你发现这个故事还有一个什么特点? 引导学生讨论后回答:像这样重复下去,这个故事永远也讲不完。随学生的回答板书:讲不完。

师:这种不断重复的现象不但故事中有,在有的计算中我们也会遇到。我们来看这样一个问题。

多媒体课件出示第27页王鹏赛跑的情景图。引导学生观察图意后,列出算式400÷75。

师:请同学们用竖式计算这个算式,看计算过程中你能发现什么?

学生计算,在计算过程中引导学生发现400÷75这个算式的两个特点:①余数重复出现“25”;②商的小数部分连续地重复出现“3。”

师:像这样继续除下去。能除完吗? 生:可能永远也除不完。

师:怎样表示这种永远也除不完的商?这种商有些什么特点,就是这节课我们要研究的问题,也是我们要认识的新朋友——循环小数。

板书课题:循环小数

二、认识循环小数 1.初步认识循环小数。

请一位学生把400÷75的竖式计算放到视频展示台上。师:刚才我们发现了这个算式的三个特点,下面我们探讨一个问题,为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?

引导学生发现:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。

师:猜想一下,如果继续除下去,商会是多少?它的第4位商是多少?第5位呢? 学生思考后回答:如果继续除下去,无论是哪一位,只要余数重复出现25,它的商也就重复出现3。

师:是这样的吗?我们可以接着往下除来看看。学生验证略。

师:那么我们怎样表示400÷75的商呢?

引导学生说出:可以用省略号来表示永远除不尽的商。教师随学生的回答板书:400÷75=5.333…

师:我们所说的重复也叫做循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就是循环小数。

2.进一步认识循环小数。

师:下面我们来继续研究循环小数,请同学们用竖式计算786÷11。

学生先独立计算,然后在小组内讨论,教师在视频展示台上出示写有讨论问题的卡片,如:

①这个算式能不能除尽? ②它的商会不会循环? ③如果循环它是怎样循环的?

(学生计算、讨论、交流,大约控制在4分钟,然后组织全班汇报,学生的意见可能出现以下两种)

生1:我们小组认为这个算式不能除尽,但它的商不会循环。师:为什么?

生1:因为它不像例1那样连续出现数字“3。”

生2:我们小组认为这里的商不能除尽,而且会循环。师:说说你们这样猜测的原因?

生2:因为我发现有数字“4”和“5”的重复。

师:大家觉得他们的猜测正确吗?请你们(指生1)这组的同学继续除下去,看商的小数部分会不会重复出现

4、5。

学生计算后证实会重复出现

4、5。

师:比较5.333…和7.14545…,你觉得这两个循环小数有什么不同?

生:前一个循环小数是一个数字循环,后一个循环小数是两个数字循环。

师:请同学们用循环小数的方式标出这个算式的商。指导学生写出78.6÷11=7.14545…

师:你觉得这样的算式除到哪一位就可以不除了呢? 指导学生说出,只要余数重复了,就可以不除了。师:为什么?

引导学生说出:因为像这样的算式余数循环,商也会跟着循环。师(指着5.333…,7.14545…):对了!像5.333…,7.14545…这样的小数都是循环小数。你能像这样写出几个循环小数吗?

学生写后,组织全班交流。

教师:观察这些循环小数,说说它们有什么共同之处? 引导学生观察、讨论后,指导学生说出:都是从小数部分的某一位起,都有一个数字或几个数字依次不断地重复出现。

三、学习用简便记法表示循环小数,认识有限小数和无限小数 师:能把这些循环小数中循环的数字用你喜欢的方式标出来吗? 学生自主活动,并让几名学生在黑板上的循环小数上进行标示。如:

5.3333…

7.14545…

教师边指边介绍:这些在小数部分依次不断地重复的一个或几个数字,可以用这样的方式把它写出来。如5.3333…可以写作,7.14545…可以写作。这就是用循环节表示循环小数,如果同学们对循环节有兴趣,可以看一看教材第28页的阅读材料。

学生看书。

师:请同学们计算15÷16和1.5÷7。学生计算后,问:从中你发现什么? 生:15÷16=0.9375,1.5÷7=0.2142857…

师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种情况,你知道是哪两种情况吗?

引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种情况是继续除下去,永远也除不完,像1.5÷7一样。

师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?

生:无限的。

师:所以循环小数是无限小数。请同学们写几个无限小数,再写几个有限小数。

学生写后,集体订正。

四、课堂小结

教师:今天你发现了哪些有趣的问题?通过今天的学习你有哪些收获?

学生回答略。

五、运用巩固

指导学生完成练习五第1~5题,对学有余力的学生,可以指导他们完成第6*题。

循环小数的教学设计

循环小数五年级数学教学设计

循环小数优秀教学设计(推荐14篇)

《循环小数》教学反思

循环小数教学反思15篇

本文标题: 循环小数教学设计
链接地址:https://www.dawendou.com/jiaoxue/jiaoxuesheji/577719.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《循环小数教学设计》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有