边角边教学设计
第1篇:全等三角形边角边教学反思
全等三角形的判定-边角边教学反思
石门县磨市镇中心学校 向琳才
本节课遵循“数学教学是数学活动的教学,学生是数学学习的主人”这一理念,坚持以学生为主体,教师为主导,让学生自始至终处于积极思维、主动探究的学习状态,同时借助多媒体进行演示,已增强教学的直观性。
本节课从整体上看,比较成功的完成了当堂的教学目标。通过课前热身回顾上节课所学的内容质疑导入,集中学生的注意力,激发学生的探究问题的欲望,引导学生通过问题一的引导“画一画、比一比、想一想”自己动手画出满足条件的三角形,认真观察,并作比较交流,从而发现自己所画出的三角形与其他同学画的三角形是全等的,运用所掌握命题的知识将所获取的定理转化为几何语言,具体的让学生明确了本定理的实际运用。教师引导学生在合理猜测的基础上,亲自动手实践去发现、验证所得结论、激发了学生的学习兴趣,使他们体会到探索的快乐,通过画图证明自己所得结论,增强了学习的信心,始终与学生的实际情况相结合,让不同水平的学生在本节课都能得到发展,通过学生之间的质疑对抗,发现此定理中角必为夹角,从而得出三角形全等的判定方法——边角边。进而引导学生通过运用展示的环节深刻理解“边角边”这一判定定理。
在学习方式上,大胆让学生去猜测、实验、进行合理推理、造就认知冲突,直至发展推理。在运用展示中,注意对学生进行说理的训练,让学生逐步熟悉和掌握由已知结论推出新结论的方法,按准备条件-指定范围-摆明条件-得出结论的过程,进一步掌握规范的书写格式。从直接条件,隐含条件,间接条件,各类题目的层层深入,使学生理解,解题时要先根据图形和已知分析它们所在的三角形,然后证明其全等。同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决。
总之:从我个人感觉来说,我觉得我比较成功的有以下几点:(1)目标明确,重点突出;
(2)方法得当,充分调动了学生的学习积极性;(3)习题由浅入深,设计合理;(4)关注每一位学生,知识落实好;
(5)教师引导,学生讲解,学生间、师生间讨论质疑对抗的场景层出不穷,体现了新课程的理念。从学生角度来说:
(1)学生自己动手操作,由感性认识上升到理性认识,训练了思维能力;
(2)在课堂上能合作交流,不只学习了知识,情感也得到了释放和发展;
(3)运用展示,当堂检测中发现学生对三角形全等的判定(SAS)掌握的好。
第2篇:角边角教学设计
12.2三角形全等的判定
(三)----角边角教学设计
雷州市客路中学 蔡焕磊
一、学情分析,“SAS”定理,已了解了三角形全等的概念及性质,学生通过前面学习判定方法“SSS”掌握了全等三角形的对应边、对应角的关系,这为探索三角形全等的条件做好了知识上的准备。另外,学生也具备了一定的作图能力,这使学生能主动参与本节课的操作、探究。值得注意的是,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,而且初二学生还不具备独立系统地推理论证几何问题的能力,思维有一定的局限性,考虑问题不够全面。
二、教材分析
《角边角》定理是新人教版八年级上册第12章“三角形全等判定”的第三课时,它是同学们在学习了全等图形的概念以及学习判定方法“SSS”,“SAS”定理的基础上,进一步学习三角形全等的判定方法,为后续学习内容奠定了基础,是初中数学的重要基础内容。
三、教学目标
1、知识与能力:
(1)、让学生在探究的过程中得出 “ASA”公理。
(2)、能运用“ASA”证明简单的三角形全等。
2、过程与方法
(1)初步渗透综合法和分析法的思想方法,提高学生演绎推理的条理性和逻辑性。
(2)在探究的过程中提高学生观察、分析归纳能力,体会利用数学建模解决实际问题的方法。
3、情感与态度:
(1)让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇;
(2)培养学生总结知识内容,使之条理化的良好学习习惯。
四、教学重点和难点
教学重点:理解“角边角公理”,并能利用它们判定两个三角形全等。教学难点:如何引导学生发现“ASA”和它们灵活运用。
五、教学策略选择与设计
根据本节课的教学特点和学生的实际,本节课我采用“知识回顾创设问题情境引导探索发现归纳例题讲解与检测反馈”来展开,并用多媒体辅助演示和训练,在探索三角形全等判别方法的过程中,不是简单地让学生去发现课本上给出的判别方法而是让学生通过动手操作经历知识形成,从而调动、引导学生发现三角形全等的判别方法,给学生创设自主探索、合作交流、独立获取知识的机会,进而让学生更好地理解和掌握三角形全等的判定方法,且教师给于充分肯定。同时,让学生明白数学来源于生活,服务于生活。让不同的人在数学上得到不同的发展,使学生都能获得学习数学的兴趣和热情,体现了新课程标准的理念“学生是数学学习的主人”。
六、教学过程
出示幻灯片。
(一)、知识回顾
引语:上节课的学习,已经学会了三角形全等的一种识别方法,请同学们回答下面几个问题:
1.怎样的两个三角形是全等三角形?
2.全等三角形的性质是什么? “SAS” 判定方法是如何叙述的?
3.“SSS”,[设计意图]做好上课前的准备工作,复习旧知,引出新知。
(二)、创设情境,提出问题
同学们,除了这个判定方法,还有没有其他的判定方法呢?数学知识是来源于生活的,因此,下面我们就从生活实际中去寻找答案。
(出示幻灯片)
想一想:
在一次施工过程中,工人师傅不小心将一张三角形玻璃打碎成了三块(如图所示),请你说一说工人师傅拿哪一块去玻璃店,才能买到相同形状的玻璃?
问:究竟拿哪一块能买到一块一模一样的玻璃三角板? 学生猜测的结果:图(1),可能,图(2)不能,图(3)可能可以恢复
2 师:用多媒体展示图片,组织学生联系实际,帮忙解决问题。生:乐于思考。师生共同讨论猜测,学生齐答。
[设计意图]通过问题情境的创设,不但引入了本课的课题,而且激发了学生的好奇心和求知欲,调动了学生的学习积极性,使他们体会探索的过程是为了解决问题的实际需要。联系生活,充分调动学生的积极性(让学生动起来)。
(三)引导探索 出示幻灯片 动手画一画
先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B.把画好的△A/B/C/剪下,放到△ABC上,它们全等吗? 师:首先给出条件,适时启发学生。幻灯片出示画法
师:组织学生按照要求动手实验,并巡视指导学生画图,是否唯一,比较是否全等的过程。
同桌或前后桌之间进行大小比较,从而归纳出结论。(作图时,学生可以利用量角器、直尺、三角尺等一切工具)
出示幻灯片。展示课题12.2三角形全等的判定(3)----角边角 你能模仿上一节的“边角边”公理,用一句话来概括一下吗?
[设计意图]让学生规范的动手作图,通过观察、比较、探索、归纳出结论的过程,体验到学习数学的成就感。从而有意识地培养学生的探索精神和探索能力,把自主探索的权力还给学生。结合多媒体展示三角形的在一定条件下全等的过程,让学生通过直观感知、操作确认等实践活动、加深对知识的理解和感受。在这用多媒体展示,突破了传统的教学,使知识变得更为直观,易于学生整体感知(四)、发现归纳
由此我们得到一个重要结论,三角形全等的又一个判定:“ASA”判定方法,(出示幻灯片)
全等三角形的判定方法3:
有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”).(五)例题讲解
出示幻灯片
例3如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:
3 AD=AE.
师:分析题意,启发学生找出满足所学的三角形全等的条件。学生独立思考;并能说出推理过程。
[设计意图]设置例3的目的给学生应用“角边角”解决问题做出示范。
(六)、检测反馈
出示幻灯片
1.已知:在△ABC和△DEF中,AB=DE ,∠B=∠E,若要使△ABC≌ △DEF,则需补充条件()
A.∠A=∠D
B.AC=EF C.AB=EF
D.BC=EF 2.如图所示,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对 B.2对 C.3对 D.4对
[设计意图]第1、2题可以检查学生对全等条件是否能区别并运用。
3、(2012.广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C. 求证:BE=CD.
4 [设计意图]此题是例3 的变型,使学生进一步巩固所学知识的同时又能发挥学生对所掌握知识的灵活性。
(七)、课堂小结
出示幻灯片
请同学们结合今天所学知识,把新旧知识的方法形成系统进行归纳总结
[设计意图]根据教学过程反馈的信息,由学生回顾所学内容,从知识,技能数学思想方法等方面有联系地进行归纳,有利于学生熟练掌握和运用知识。为以后继续学习服务。
(八)、布置作业
出示幻灯片
1.课本P43习题12.2第3,课本P44第11题.
[设计意图]根据教学过程反馈的信息,由学生回顾所学内容,从知识,技能数学思想方法等方面有联系地进行归纳,有利于学生熟练掌握和运用知识。为以后继续学习服务。
(九)、教学设计反思教学反思:通过同学们的操作、交流、互动,我们实现了对全等三角形的判定(ASA)的多层面了解.有一部分同学还有些关于全等三角形的判定(ASA)的知识是我们所没有了解,下来同学之间加强交流学习.希望已经掌握本节的同学们能通过课外自己查阅相关资料,解决我们生活中的三角形全等,并构建造出属于我们自己的美丽天地!
第3篇:角边角教学设计
初二上册第一章第3节《探索三角形全等的条件》 《角边角的探究及简单应用》“微课堂”教学设计
一、目标设计
1.理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质.
2.通过探究归纳平移的性质,积累数学活动经验,提高学生的数学思维能力.
二、过程设计
(一)探索发现
生:每位学生画一个三角形,使它满足两个角分别为60°和80°,它们所夹的边为2cm。画完后用剪刀剪下来,和其他同学剪的三角形比较,看看是否能够重合。
师:你能将刚才的发现总结一下吗? 学生交流
师生共同归纳总结:两角及其夹边分别相等的两个三角形全等。简写成“角边角”或“ASA”
【设计意图】在这一环节中,教师向学生提供了充分的从事数学活动的机会.通过自主探究、合作交流、动手画画,学生理解了“角边角”定理.同时,通过展示学生间的交流和老师的评价,进一步增强学生的自信心.
【处理策略】学生先动手操作,之后交流发现,归纳总结,教师视情况进行指点.
(二)范例尝试
例题 如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?
(学生尝试独立完成,有困难小组讨论交流,一生板演)
【设计意图】通过自学例题,强化学生的应用意识。提高学生解题能力,强化学生学数学,用数学的意识.
A
C
O
D B
三、评价设计
1.通过设疑,类比“轴对称图形”的性质来猜想图形平移的性质,让学生体会“类比”“猜想”的数学思想方法.
2.通过“探索发现”中的动手画画、小组讨论,归纳总结等数学活动,达成教学目标-----“理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质.通过积累数学活动经验,从而提高学生的数学思维能力.
第4篇:三角形边中的边角关系教案
三角形中的边角关系
教学目标:
知识目标:理解三角形的有关概念,掌握三角形三边的关系。
能力目标:通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力。情感目标:让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。教学重、难点:
教学重点:三角形三边关系的探究和归纳。教学难点:三角形三边关系的应用。教学过程: Ⅰ.回顾与思考
1.如何表示线段?2.如何表示一个角? Ⅱ.创设现实情景,引入新课
问题:看下列实物中,有你熟悉的图形吗?(出示投影:一些含有三角形的建筑物)Ⅲ.讲授新课
在小学数学中我们学习了有关三角形的一些初步知识,现在大家观察下面的屋顶框架图,并回答以下问题:观察下面的屋顶框架图。
图5-1
1.你能从图5-1中找出4个不同的三角形吗?与同伴交流各自找的三角形。(请同学们在纸上画出该图形然后来找,请一个同学上黑板指出三角形)根据指出的三角形回答下列问题:
2.这些三角形有什么共同的特点?(结合小学对三角形的认识回答)3.什么叫做三角形?(通过视频了解三角形定义)
(刚才找到的三角形能说清楚吗?可能同桌的两位或前后能指着说,隔一行或隔一排就恐怕不行,你说的是这个,他说的是那个,容易混淆,那么怎样就可以表示清楚呢?)4.如何表示三角形? 5.三角形的边可以怎么表示?
6.如果我说三角形有三要素,你能猜出是哪三要素吗?(通过视频了解三角形的基本元素)练一练:(三角形定义 三角形的表示方法)研究三角形的三条边是否相等,有多少种可能的情况?(通过视频掌握三角形按边的分类)1.三条边各不相等的三角形叫做不等边三角形,如图3-9。
2.有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角,如图3-10。 3.三条边都相等的三角形叫做等边三角形。议一议
(1)元宵节的晚上,房梁上亮起了彩灯,装有黄色彩灯的电线与装有红色彩灯的电线哪根长呢?说明你的理由。(装有黄色彩灯的电线长,我是通过测量得到的.装有黄色彩灯的电线长.因为我们在上册书中学习过这样一个性质:两点之间的所有连线中,线段最短.所以把装有红色灯的电线两端当作两个点,这样它就最短.因此,装有黄色彩灯的电线长。)(2)在一个三角形中,任意两边之和与第三边的长度有怎样的关系?(通过视频掌握三角形三边的关系)
由此你能得到什么结论?(三角形任意两边之和大于第三边)
做一做:分别量三个三角形的三边长度计算每个三角形的任意两边之差,并与第三边比较,你能得到什么结论?(分三个小组分别量出三个三角形长度并计算)(三角形任意两边之差小于第三边)
想一想:有两条长度分别为5cm和7cm的线段,用长度为13cm的线段与它们能摆成三角形吗?为什么?如果换下长度为5cm的线段,那么换上线段的长度在什么范围内可以组成三角形呢?动手摆一摆。(通过视频应用新知)
解题技巧:三角形第三边的取值范围是: 两边之差
1、2)
第5篇:三角形的边角关系教学设计
课题:三角形边的关系 课型:新授课
[教学内容]探索与发现三角形三条边之间的关系(第30-31页)[教学目标] 通过画一画、量一量、算一算等实验活动,探索并发现三角形任意两边之和大于第三边。
在实验过程中培养学生自主探索、合作交流的能力。
能应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
在应用数学知识解决实际问题的过程中进一步体会数学与现实生活的密切联系。[教学重、难点]
1、探索并发现三角形任意两边之和大于第三边。。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。 [教学准备]多媒体、几个形状不同的三角形、直尺。[教学方法]情境导入法、实验法 [教学时数]1课时 [教学过程]
一、创设情境,引出问题。
前面我们已经学习了三角形,请同学们观察老师这里的三个图形,哪些是三角形?(投影出示图形),教师结合图形与学生互相交流,待交流后教师指出:三角形与三条线段有很大的关系,下面我们就进入它们的王国探究一番。
二、问题探究,得出结论。
1、探究“任意三条线段一定能围成三角形吗?”
同学们对前面的知识掌握的很好,既然大家都知道三角形是有三条线段所围成的图形,那么任意三条线段都能围成三角形吗?请大家猜猜看。学生互相交流,有的肯定,有的不确定。
遇到这种情况我们最好的办法是实验!下面请同学们利用自己准备好的小棒开始动手实验,亲自做一做,看能否围成三角形,比一比,谁的动手能力强。(学生开始活动,教师巡视指导学生操作)
请几组同学演示可能出现的不同结果,待学生演示后教师用多媒体演示三种情况,一边演示,一边解说。
师生共同认识:任意三条线段不一定能围成三角形。
2、探究“什么样的三条线段围不成三角形呢?”
同学们很爱动脑筋,提出了这么多值得研究的问题,为什么前面操作过程中出现两种围不成三角形呢?大家先独立思考想一想,想好以后,先同桌互相说一说,交流一下。(学生思考交流,教师融入学生之中倾听、参与学生的讨论。)全班交流,学生自由发表自己的意见。教师总结学生的意见,(教师手指着图说:)
当两条线段的和等于第三条线段时,组不成三角形。同学们是不是这个意思!投影再次展现:两条线段的和小于第三条线段时组不成三角形;两条线段的和等于第三条线段时组不成三角形。
3、探究“什么样的三条线段可以围成三角形呢?” 即:“三角形三边之间的关系” 同学们不仅有很强的动手能力,而且还很爱动脑筋,在我们的共同努力下发现了“两条线段的和小于第三条线段时组不成三角形;两条线段的和等于第三条线段时也组不成三角形”。那么,三条线段究竟在什么情况下才能构成三角形呢?也就是说围成后的三角形三边有什么关系呢?(板书课题:三角形的三边关系)
三角形的三边究竟有什么关系,结合刚才我们所围成的三角形,先独立思考,想一想,和同桌交流一下,如果有困难,再用小棒摆一摆。(学生汇报自己的意见)同学们能把你的发现用数学式子写出来吗?老师把大家的发现用关系式写出来: 3+4>5 3+5>4 5+4>3 请同学们想好之后先说给同桌听,再全班交流,我们能不能用一句话来概括这个三角形三边之间的关系呢?
教师板书结论:“三角形任意两边和大于第三边”。
4、验证“是否所有三角形都存在任意两边之和大于第三边”
是不是任意一个三角形三边之间都有这样一个规律呢?我们这个发现还需要再次验证,请每个同学在练习本上任意画一个三角形,测量三条边的长度,并计算一下,看是否具有“任意两边之和大于第三边。” 学生在练习本上画图,测量,验证,汇报。
师生交流得出,只要是三角形就一定具备“任意两边之和大于第三边”。
5、形成结论“三角形任意两边的和大于第三边”。
三、应用深化,达成认识
同学们,我们梳理一下前面的研究过程:发现问题——大胆猜想——方法验证——归纳结论,我们得出了“三角形任意两边的和大于第三边”,下面我们就来应用它解决问题。
1、投影出示练习题
2、投影出示练习题
3、摆一摆,练一练(第31页第3题)师生共同完成。
四、说说收获,相互评价
这节课同学们都有哪些收获,感受!你是通过哪些方法获得这些知识的?
五、[布置作业] 第31页第2、4两题
六、[板书设计]
三角形三条边的关系
填一填:
结论:
七、[教后反思]
第6篇:《探索三角形全等的条件》》(边角边)教学反思
《探索三角形全等的条件》(边角边)教学反思
宁德市实验学校初中部 贾庆庆
三角形的全等是初中阶段学习的重点,它是两个三角形最常见的关系,它不仅是学习后面知识的基础,而且是证明线段相等、角相等的重要依据。因此要要求学生熟练掌握三角形全等的判定方法,并且能够灵活应用。
在教学过程中,学生通过复习全等三角形的概念及其特征,掌握了全等三角形的性质,这些知识都为学习《探究三角形全等的条件》(边角边)做好了准备。
本节课主要体现了以下几个方面:
1、复习巩固,设置问题
2、通过作图,自主探究
3、合作交流,探讨结论
4、例题讲解,学以致用
但在探究过程中也出现了一些问题,如:在探究"两边和其中一边的对角对应相等的两个三角形是否全等"时,学生在作三角形时出现了困难。
本节在应用定理判定三角形全等时的练习有点多,可能有些学生思维有点跟不上,是本节课的一大遗憾。
另外,在小组交流时气氛不是很活跃。
最后,我考虑在这种情况下是否可以让一个小组展示,一个小组讲解可能会更好一些。总之,从本节课的教学效果来看,学生能达到这个程度还算可以,实现了本节课的教学目标。自己以后要吸取教训。
听课心得体会
宁德市实验学校初中部 贾庆庆
本周二我有幸在初二(4)班听课学习,观摩了黄老师的高效课堂,一节课的听课学习我收获很大,下面就这一节的听课情况谈点自己的感受。
在整堂课中,黄老师并没有挖苦心思的讲解,而是在指导学生各个环节自主学习新知识。在教学过程中注重加强小组合作学习,提供学生合作、探究、交流的时间和空间,让学生协调配合,对学习内容进行充分的探究。培养了学生的合作交流能力,整堂课过得轻松、和谐。
以上是我听课的心得体会,我以后要把通过听课学习到的优秀经验,用到自己的教学工作中,让自己的课堂也更加活跃起来,真正让学生在快乐的氛围中学习。充分体现"教师以学生为主体,学生是学习的主人,教师是学习的组织者、引导者和合作者"的教学理念。
第7篇:《三角形中的边角关系》教学设计
《三角形中的边角关系》教学设计
教学目标 【知识与技能】
1.认识三角形,理解三角形的边角关系.
2.知道三角形的高、中线、角平分线等概念,并能作出三角形的一边上的高.3.理解等腰三角形及其相关概念.【过程与方法】
1.经历三角形边长的数量关系的探索过程,理解三角形的三边关系.2.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题.
【情感、态度与价值观】
1.带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲.
2.帮助学生树立几何知识源于生活并服务于生活的意识.重点难点 【重点】
理解并掌握三角形的三边关系.【难点】
已知三条线段能构成三角形,求表示线段长度的代数式中字母的取值范围.教学过程
一、创设情境,导入新知 教师多媒体出示:
教师把事先收集的与三角形有关的生活图片运用多媒体播放,让学生对三角形有一个感性认识,如图所示.教师活动:通过播放图片,引导学生认识三角形,并提出:图(b)中能找出几个三角形,这些三角形具有怎样的特性?
学生活动:回顾小学学过的三角形,与同桌交流,找出图(b)中的三角形.教师归纳:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.教师多媒体出示:
师:你能指出这个三角形的顶点有几个吗?分别是什么? 生:这个三角形的顶点有三个,分别是A、B、C.师:这个三角形的边呢? 生:边有三条,分别是AB、BC和CA.师:对.我们把这个三角形记作“△ABC”,读作“三角形ABC”.三角形的三边有时用它所对角的相应小写字母表示.如边AB对着∠C,记作c;边BC对着∠A,记作a;边CA对着∠B,记作b.也就是说,一边可用两个大写字母或一个小写字母表示,角可用“∠”加上一个大写字母表示.师:按边分类时,你知道的都有哪些三角形? 生:等边三角形.师:等边三角形是三条边都相等的三角形.如果不是三条边都相等,比如两条边相等,这类三角形叫什么三角形呢? 生:等腰三角形.师:对,等边三角形是等腰三角形的特例.如果三条边都不相等呢? 学生思考.师:我们把这类三角形叫做不等边三角形.教师多媒体出示:
教师板书: 三角形(按边分)
师:在等腰三角形中,你能区分哪条边是腰,哪条边是底吗? 生:相等的两边叫做腰,第三边叫做底边.师:对.我们现在再来认识一下顶角和底角.两腰的夹角叫做顶角,腰与底边的夹角叫做底角.二、共同探究,获取新知
师:请大家任意画出一个三角形,用刻度尺测量一下,并说说任意两边之和与第三边的关系.学生操作.生:任意两边之和大于第三边.师:对,你有没有其他的方法来证明三角形的任意两边之各大于第三边呢? 生:由所有两点之间的连线中线段最短得到.教师板书:
三角形中任何两边的和大于第三边.师:对.根据不等式的性质,我们能得到三角形中任意两边的差小于第三边.(教师板书)如果三条线段要构成一个三角形,它们就要满足这两个条件,但是在实际计算中,需要验证六个不等式都成立吗? 学生思考,讨论.师:不等式a+b>c,你把a移到不等式的右边,这个不等式如何表示? 生:b>c-a.师:对,也就是c-a
生甲:同样的道理,由两个三角形两边之和大于第三边,可以得到两个三角形两边之差小于第三边.生乙:我们只要验证“三角形中任何两边的和大于第三边”和“三角形中任何两边的差小于第三边”,因为第二个条件由第一个得到,所以我们只要满足第一个条件即可.下面请大家看一个例题.教师多媒体出示:
【例】 等腰三角形中,周长为18cm.(1)如果腰长是底边长的2倍,求各边长;(2)如果一边长为4cm,求另外两边长.师:请同学们思考后回答.生:设等腰三角形的底边长为xcm,则腰长为2xcm,根据题意,得 x+2x+2x=18,解方程得x的值,即底边长,然后求出腰长.师:当已知一边长为4cm,但并未指明它是腰还是底时,应该怎么求另外两边的长呢?
生:要分4cm是腰长和底边长两种情况来讨论.师:对.还要注意对得到的三条线段能否构成一个三角形进行讨论.教师找两名学生板演,其余同学在下面做,然后集体订正.解:(1)设等腰三角形的底边长为 xcm,则腰长为2xcm.根据题意,得 x+2x+2x=18.解方程,得 x=3.6.所以三角形的三边长分别为3.6cm、7.2cm、7.2cm.(2)若底边长为4cm,设腰长为xcm,则有
2x+4=18.解方程,得 x=7.若一条腰长为4cm,设底边长为xcm,则有 2×4+x=18.解方程,得 x=10.因为4+4
三、练习新知
师:请同学们判断用下列长度的三条线段能否组成一个三角形.(1)1cm、2cm、3cm;(2)2cm、3cm、4cm;(3)4cm、5cm、6cm;(4)5cm、6cm、10cm.教师找四名同学回答,然后集体订正.师:同学们可以总结出判断三条线段能否构成一个三角形的简便方法吗? 以题(2)为例,根据三角形任意两边的和大于第三边,我们要作几个判断? 生:三个.师:哪三个?
生:2+3>4,2+4>3,3+4>2.师:你能不能用一个判断的结果得到这三条线段能否构成三角形? 生:……
师:2+4一定大于3,3+4一定大于2,因为长度为4的这一条边长已经大于3了,同样的长度为3或4的一条边长已经大于2了.生:只要看最长的一边是否小于其他两边之和.师:很好.四、课堂小结
师:今天我们又学习了什么内容?
生:我们学习了三角形的分类,等腰三角形的底边和腰,三角形三边的关系等.教师补充完善.教学反思
通过本节课的学习,使学生认识到不是任意的三条线段都能构成三角形,并让学生知道怎样判断三条线段是否能构成三角形.在判断三条线段能否构成三角形时,我们不对任意两边之和是否大于第三边、任意两边之差是否小于第三边一一验证,因为后面的式子可由前面的变形得到.事实上,只要看最长的一边是否小于其他两边之和即可,因为当这个条件成立时,其他的两边之和大于第三边的式子也成立.通过这些方法的探讨使学生养成积极思考、简化计算的习惯.
第8篇:《三角形全等的判定》(边角边)参考教案
三角形全等的判定
(二)
林东第六中学初二数学备课组
教学目标
1.三角形全等的“边角边”的条件.
2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.
3.掌握三角形全等的“SAS”条件,了解三角形的稳定性. 4.能运用“SAS”证明简单的三角形全等问题. 教学重点
三角形全等的条件. 教学难点
寻求三角形全等的条件. 教学过程
一、创设情境,复习提问
1.怎样的两个三角形是全等三角形? 2.全等三角形的性质?
3.指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:
图(1)中:△ABD≌△ACE,AB与AC是对应边; 图(2)中:△ABC≌△AED,AD与AC是对应边. 4.三角形全等的判定Ⅰ的内容是什么?
二、导入新课
1.三角形全等的判定
(二)
(1)全等三角形具有“对应边相等、对应角相等”的性质.那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:
如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?
不难看出,这两个三角形有三对元素是相等的: AO=CO,∠AOB= ∠COD,BO=DO.
如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.
(此外,还可以图1(1)中的△ACE绕着点A逆时针方向旋转∠CAB的度数,也将与△ABD重合.图1(2)中的△ABC绕着点A旋转,使AB与AE重合,再把△ADE沿着AE(AB)翻折180°.两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等. 2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图: ①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm,AC=2.8cm. ③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.
(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合? 3.边角边公理.
有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)
三、例题与练习1.填空:
(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).
(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).
2、例1 已知:
AD∥BC,AD= CB(图3).
求证:△ADC≌△CBA.
问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌ △CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF= CE或AE =CF)?怎样证明呢?
例
2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.
四、小
结:
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.
2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
五、作
业:
1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF. 求证:△ABE≌△CDF.
