当前位置: 首页 > 教学资源 > 教学设计

扇形面积教学设计(共10篇)

作者:skyqqww | 发布时间:2020-05-18 08:51:28 收藏本文 下载本文

第1篇:扇形面积的教学设计

北师大版五年级第十册第七单元“扇形统计图教学设计

教材呈现了小丽一家三口一天各类食物摄入量的统计表,要求学生计算每种食物摄入量占摄入总量的百分比。然后,教材呈现了条形统计图和扇形统计图,主要是让学生读懂统计图,并在与条形统计图与扇形统计图的对比中认识扇形统计图。教学时,我主要利用这些学习材料,组织学生学习,逐步认识扇形统计图,体会扇形统计图反应的是整体与部分的关系。

在教学中,我是这样做的:

(一)谈话复习迁移新知

(二)对比归纳 找出特点

1、出示课件:老师也收集了小丽一家三口一天各类食物的摄入量(膳食宝塔图右面出示统计表)

提问,让学生思考

观察你发现了什么?

我们可以利用什么统计图表示统计表中的数据?(课件:在表下面出示条形统计图)

从条形统计图中,同学们能获得哪些信息?

(三)观察发现 体会作用

用我们学过的条形统计图、折线统计图能不能表示占总摄入量的百分比(不能),那我们一起来研究一种新的统计图

这种统计图是把各类食物所占的百分比表示在----(一个圆里)(呈现圆),也就是作为单位“1”的数量,把它看成一个整体(板书:整体)

①那大家觉得如何表示在圆里呢?(把圆分成几部分……)

②那怎么分呢?(每类食物占百分之几,就画出占圆面积的百分之几)根据前面计算的数据,把圆分成5部分(呈现分成5部分)。表示整体中的各个部分。

这每个部分像什么形状?(像扇子一样)对,它叫做扇形统计图。(板书)

你们觉得每一部分应该表示哪些食物的百分比呢?(生自由答:最大的那块是谷类,最小的……理由)

2.(呈现完整的扇形统计图)从这个扇形统计图中,你可以获得哪些信息?(生:谷类占47.4%……油脂类最少……)

(四)巩固应用

我们先来看这一幅扇形统计图,这是一张关于鸡蛋各部分重量占鸡蛋重量的百分比的统计图

从这张图上你知道了什么?(预测:它们分别占了谁的百分之几?)

在这一幅图中,用什么来表示蛋壳的重量,用什么表示鸡蛋的重量?

那么我们也可以说这个扇形占整个圆的15%

小结:扇形统计图都是用一个圆表示单位“1”的量,用扇形表示其中的部分量,它反应的部分量和总量之间的关系。

(五)总结

从这幅扇形统计图中能最清楚地看到什么?扇形统计图有什么特点?(同桌之间讨论一下)

这是我教学中的一个案例,我是按照搜集数据、整理数据、提取信息、最后决策的思路进行教学的。

第2篇:扇形的面积教学设计

《扇形的认识》教学设计

【教材分析】

本节课是人教版《义务教育教科书数学》六年级上册75页的内容,本课“扇形的认识”的教学,是在学生了解圆、掌握圆的周长和面积的计算的基础上进行的,目的在于通过教学引导学生把生活中随处可见的扇形、扇环的数学元素引入到数学学习中,通过学习引导学生初步认识扇形,为后续学的扇形统计图的学习提供知识基础,并培养学生从数学的角度观察生活的习惯,积累数学活动的经验。【学情分析】

学生在日常生活中随处可见扇形、扇环等物体,但对于扇形的具体特征还没有深入的了解,因此,在教学时首先组织学生通过动手操作来认识扇形,在活动中引导学生构建“扇形”这一数学模型,培养学生的空间观念。

【设计理念】

数学课程标准的基本之一是“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、交流等数学活动。”培养创新精神与实践能力是新课程改革的核心目标;新课程自主学习、探究学习,数学学科的学习价值在于让学生亲身经历知识发生发展的过程。教学时,重点引导学生通过找一找、说一说等方式激活了学生原有的“扇形”生活经验,结合活动帮助学生构建“扇形”这一数学模型,并在这过程中培养学生观察能力和发现问题的能力。【教学目标】 1.知识目标:

(1)在观察、讨论、判断等活动中,并能准确判断圆心角和扇形。(2)体会扇形和圆的关系,感受扇形图与名称的联系,能在圆中画出扇形。(3)理解扇形概念,知道扇形有一条对称轴以及圆心角的大小决定扇形面积。2.能力目标:知道扇形,初步了解扇形的特征,能在圆中画出扇形。3.情感目标:体会扇形和圆的关系,感受扇形图与名称的联系。【教学重点】:认识弧、圆心角、扇形,能准确判断扇形。【教学难点】: 扇形知识的运用

一、生活引入,揭示课题

1、教师拿出扇子并打开圆形折扇,让学生观察,说一说:“想到什么图形以及哪些和圆的知识能联系在一起”给学生充分发表意见的机会。 师:同学们,看老师手里拿的是什么? 生:扇子。教师打开圆形扇。

师: 观察这把打开的扇子,你能想到什么图形? 生:圆形。

师:谁能说一说,这把打开的扇子哪些和圆的知识能联系在一起? 学生可能会说:

(1)扇子的面的大小是圆的面积的一部分。(2)扇子的折痕相当于圆的半径。(3)固定扇子的轴相当于圆心打开。

2、生活中跟扇形打交流的东西太多了,欣赏扇形图片

设计意图:图片是一种美,把美融入数学中去教学,可以去除数学枯燥单一的讲授教学,使带动学生学习的兴趣,为学生认识扇形作铺垫。

二、揭示课题。

1、师:你知道刚刚扇子打开的叫面叫什么吗?(扇形)

今天我们就一起来研究扇形。

教师板书课题:扇形的认识。

2、认识扇形

让学生观察四个扇形,鼓励学生用自己的话描述扇形有什么特征。给学生充分发表不同意见的机会。使学生知道扇形是由两条半径和圆上的一段曲线围成的图形。最后,教师进行概括,教师结合抽象出的扇形,介绍圆心角的概念,并在圆上标出。师:请同学们继续观察这些扇形,谁能用自己的话描述一下扇形有什么特征? 学生可能会说:

学生1:扇形都是圆的一部分。

学生2:扇形是由两条半径和圆上的一段曲线围成的图形。

学生3:扇形都有一个角,角的顶点在圆心。引导概括扇形的概念

同学们认为什么样的图形才叫做扇形呢?学生可能回答

学生1:有一个角和一条曲线

学生2:角的顶点一定是圆心......师:这条曲线在圆的什么的地方呢?

学生可能回答:在圆上或是圆的一部分,因此我们画的时候要有工具——圆规

设计意图:通过合作交流、讨论,相互借鉴和帮助,同步开发智力,激励每一个学生既自己去独立思考、发表见解,又善于倾听其他同学的不同意见,在小组交流、合作中达到共同获取知识、发展能力的目的。但小组合作学习过程经常会出现不友好、不倾听、不分享的现象,使学生在宽松、和谐的氛围中萌发创新意识。小孩不愿合作的意识是浅表性的,只要老师稍加引导就行了,如果坚持训练,学生的合作意识就会加强。相互借鉴和帮助,同步开发智力,使学生在宽松、和谐的氛围中萌发创新意识。学生不愿合作的意识是浅表性的,只要老师稍加引导就行了,如果坚持训练,学生的合作意识就会加强。

3、认识弧

指导全体学生画弧

给弧的两端标上两个点AB,这条“弧”就读作“弧AB”。强调并指出:(1)A、B两点在什么位置?(圆上)

(2)师:圆上A、B两点间的部分叫弧。课件演示:(3)追问:圆上A、B两点间的部分叫什么?什么叫弧?(板书:弧:圆上A、B两点间的部分)读作:弧AB

4、认识圆心角

(1)线段OA、OB是圆的什么?(半径)

半径OA、OB所夹的部分叫什么?(角)这个角的顶点在圆的什么位置?(圆心)

师:顶点在圆心的角叫圆心角。什么叫圆心角?(板书 圆心角:顶点在圆心的角)

(2)请学生在圆上标出圆心角。谁是圆心角?(∠AOB是圆心角)(3)练习:教材76页1题

5、认识扇形

(1)出示扇形,我们把这个图形叫扇形,那什么叫扇形?(小组交流汇报)学生1:由圆心角和两条半径围成学生2:圆心角所对的弧围成的图形叫扇形。„„

(板书;扇形是一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。)(2)同学之间用手描一描自己手中的圆,互说哪一部分是扇形。

(3)观察桌上已剪好的图形,请你选择其中的一个图形说一说,它是扇形吗,为什么?

(4)师演示:黄色部分是什么图形?(扇形)为什么?

三、巩固练习

1、做练习四的第1~3题. 第1题,指出下列物体的扇形

第2题,下面图形中哪些角是圆心角。(提醒学生利用圆心角的概念去判断)

第3题,先让学生画一个半径是2厘米的圆,再以圆心为顶点画一个100°的扇形。(教师巡视,检查学生有没有把角的两条边画出了圆周)2.判断。

(1)顶点在圆上的角是圆心角。()(2)因为扇形是它所在圆的一部分,那么圆的一部分一定是扇形。()(3)在同一个圆内,圆心角越大,扇形也就越大。()(4)圆比扇形大。()(5)半圆也是一个扇形。()3.画一个半径是2 cm的圆,再在圆中画一个圆心角是100°的扇形。设计意图:练习题层层深入,考查学生对扇形特征的理解,有利于学生对新知识的巩固。

四、布置作业

设计一个扇形,在图上标它的圆心角,半径和弧的位置。

五、板书设计

扇形的认识

圆上A、B两点之间的部分叫做弧,读作孤AB 一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形 顶点在圆心的角叫做圆心角。

第3篇:《弧长和扇形面积》教学设计

24.4 弧长和扇形面积

第二课时

一、教学目标

(一)学习目标

1.了解圆锥母线的概念,探索并理解圆锥侧面和全面积计算公式; 2.会灵活应用圆锥侧面积和全面积计算公式解决问题.

(二)学习重点

探究圆锥侧面积和全面积的计算公式.(三)学习难点

应用圆锥侧面积和全面积计算公式解决问题

二、教学设计 1.自主学习

(1)弧长计算公式和扇形面积计算公式回顾

师问:上节课我们学习了弧长计算公式和扇形面积计算公式,你们还记得它们是怎样的吗? 生答:弧长l=半径)

生答:扇形面积S=(2)圆锥的再认识

(教师出示一组生活中含圆锥形物体的图片)nR2,(其中n表示扇形圆心角的度数,R表示扇形所在圆的半径)360nnR2R=,(其中n表示弧所对的圆心角的度数,R表示弧所在圆的360180

师问:上面的物体中,有你熟悉的立体图形吗? 生答:圆锥体

师问:非常好,它们都含有圆锥体(如下图),那么什么是圆锥体呢?

生答:圆锥是由一个底面和一个侧面组成的,它的底面是一个圆,它的侧面是一个曲面. 师问:我们将圆锥顶点和底面圆周上任意一点连接的线段称作圆锥的母线,那么一个圆锥有多少条母线呢?它们在数量上有什么关系? 生答:有无数条,它们是相等的. 师问:为什么是相等的呢?

生答:由勾股定理,每条母线l=h2r2,h表示圆锥的高,r表示底面半径,对于同一个圆锥体,h和r的长是固定的,因此母线的长也是固定的.

师:非常好!我们不仅知道母线长度是相同的,而且还了解了有关母线的一条非常重要的性质:母线l、圆锥高h、底面半径r之间满足:l2h2r

2【设计意图】本节课探究的圆锥的侧面积和全面积,因此有必要重新认识圆锥,另外,本节课必须使用到上节课学习的弧长计算公式和扇形面积计算公式,因此也有必要回顾这两个公式,为本节课教学内容顺利进行做铺垫.

二、合作交流

师:大家分析得非常好,接下来请大家以小组为单位,完成下列问题串:

如图,沿圆锥的一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,(1)设圆锥的母线长为l,底面圆的半径为r,如图所示,那么这个扇形的半径为________;(2)扇形的弧长其实是底面圆周展开得到的,所以扇形弧长为________;(3)因此圆锥的侧面积为________,圆锥的全面积为________

l

(学生先独立思考,再小组合作完成,并展示)归纳:

①如上图,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2r,根据上节课学习的扇形面积公式S扇形半径)可知:该圆锥的侧面展开图的面积是S侧1lR(其中l表示扇形的弧长,R表示扇形212rlrl; 2②圆锥的侧面积与底面积之和称为圆锥的全面积,表示为:

S全S侧S底=rlr2r(lr)

③通过上面两个公式,我们可以看到,只要知道母线、底面半径就可以求圆锥的侧面积的全面积. 3.展示提升

如图,玩具厂生产一种圣诞老人的帽子,其帽身是圆锥形,母线SB=15 cm,底面半径OB=5 cm,要生产这种帽身10000个,你能帮玩具厂算一算帽身至少需多少平方米的材料吗?(取3.142)

【知识点】圆锥侧面积在生活问题中的应用 【数学思想】数形结合【解题过程】解:∵母线SB=15 cm,底面半径OB=5 cm ∴一顶圣诞帽需要的材料是51575cm²

∴生产这种帽身10000个,需要7510000750000cm²=75m²≈235.65 m². ∴玩具厂至少需235.65平方米的材料

【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积公式即可,但实际问题需要注意单位问题. 【答案】235.65m2

四、课堂巩固

1、在Rt△ABC中,∠ACB=90o,AC=8,BC=6,将△ABC绕AC

所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()

A.30π

B.40π

C.50π

D.60π

2、已知圆锥的底面半径为3,母线为4,则它的侧面积是_______,全面积是________.【知识点】圆锥侧面积的计算

【解题过程】解:∵母线l=4,底面半径r=3 ∴由圆锥侧面积计算公式得:S侧rl=3412 由圆锥全面积计算公式得:S全r(lr)=3(34)21

【思路点拨】已知底面半径和母线长,可以直接套用圆锥侧面积和全面积计算公式求得. 【答案】12

21 练

3、已知圆锥的底面半径为3,高为4,则它的侧面积是_______,全面积是_______.

4、已知圆锥的母线长是5cm,侧面积是20cm²,则这个圆锥的底面半径是________. 【知识点】圆锥侧面积计算公式的逆用

【思路点拨】已知圆锥的母线、圆锥侧面积,可以逆用圆锥侧面积的计算公式求得圆锥底面半径,实际上圆锥母线、圆锥底面半径、圆锥侧面积三者中可以“知二求一”. 【解题过程】解:∵母线长l=5cm,圆锥侧面积S侧20cm2 ∴圆锥侧面积计算公式:S侧rlr520 解得:r4 ∴底面半径为4cm 【答案】4cm

5、圆锥的底面半径是4,母线长是12,则这个圆锥侧面展开图的圆心角度数是_______. 【知识点】圆锥侧面积的计算,扇形面积的计算

【解题过程】解法一:∵圆锥的底面半径是4,母线长是12 ∴圆锥侧面积=S侧rl41248 设圆锥侧面展开图的圆心角度数为n 所以展开图的面积还可以表示为:∴

n122 360n122=48

解得:n=120 3604 ∴这个圆锥侧面展开图的圆心角度数是120°. 解法二:∵圆锥的底面半径是4 ∴底面周长=248

设圆锥侧面展开图的圆心角度数为n ∵圆锥的母线长是12 ∴侧面展开图的弧长=∴8=n12 180n12

解得:n=120 180∴这个圆锥侧面展开图的圆心角度数是120°.

【思路点拨】圆锥侧面展开图的面积一方面可以通过母线和底面半径来求,即Srl;另一方面也可以通过扇形本身的面积计算公式来求,即S解这个方程即可得到圆锥侧面展开图的圆心角nnnl2,这样就得到rl=l2,360360360r,其中r表示圆锥底面半径,l表示圆lnnl,这样就得到l=180180锥母线.还可以根据圆锥侧面展开图的弧长来建立等量关系,一方面圆锥侧面展开图的弧长等于底面周长2r;另一方面圆锥侧面展开图的弧长等于2r,同样可以得到圆锥侧面展开图的圆心角n360r. l【答案】120° 五.课堂小结

(1)连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,圆锥有无数条母线,它们的长度都相等,每条母线l=h2r2(h表示圆锥的高,r表示底面半径).(2)设圆锥的母线长为l,底面圆的半径为r,则该圆锥的侧面展开图的面积是12rlrl.2(3)圆锥的侧面积与底面积之和称为圆锥的全面积,设圆锥的母线长为l,底面圆的半径为S侧r,则S全S侧S底=rlr2r(lr).5

第4篇:扇形面积教案

《扇形统计图》教学案例

和美实验学校 王巧丽

教学内容:教科书106-107页,例题及做一做

教学目的:认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。

教学重点:认识扇形统计图的特点和作用,从扇形统计图中获取信息。

教学难点:认识扇形统计图的特点和作用,正确的描述扇形统计图所反映的问题。

教具准备:多媒体课件、EXCL表格。教学过程:

一、情境导入,激发兴趣。

1、谈话:同学们你们喜欢什么运动项目?我想很快知道喜欢每个项目的人数怎么办?《统计》

2、出示事先调查好的统计表计算:“喜欢的项目占全班人数的百分比”并说一说百分比的含义

3、刚才我们用学过的百分数的知识做完了统计表,那么我们利用以前学过的的知识能不能很好的表示出喜欢这些项目的人数情况呢?

二、对比分析,生成新知。

1、观察条形统计图,你从中得到了哪些有用的信息?条形统计图有什么优势?

2、从条形统计图中,还有那些信息不容易表示出来?引发思考(不能很好的表是所占总数的百分比的情况)

3、生成扇形统计图,引导观察你得到了哪些有用的数学信息?(生发表见解)

4、根据统计图上表示的情况,你对我们班的同学有哪些建议?

5、回顾知识生成归纳扇形统计图的特点和作用。

6、做一做,自主看图,说一说你从图中得到了哪些有价值的数学信息?

7、根据题意计算,全班订正。

三、知识应用解决问题。

1、练习二十五1题(自主看图,说一说李明同学一天的作息时间安排的是否合理,从中你能提出哪些合理化建议。)

2、练习二十五2题(自主看图,说一说,从图中得到哪些信息,自主根据给出的条件计算出各项支出金额。

四、总结概括拓展应用

1、总结统计图的特点及运用结合练习二十五4题

2、展示小知识 《扇形统计图》教学反思

1、疏漏与失误

充分体现多媒体电化教学带来的优势,课堂上利用excl表格现场制作条形统计图、扇形统计图对高年级学生的吸引力很大。但是由于准备不够充分,多媒体不够清晰,表格展示数字较小学生看不清楚,造成学生回答问题不积极,影响了正常的教学。

2、成功之处

预设学生学习中存在的问题,打好基础,引导学生学会运用旧知解决新的问题。比如利用百分数的含义理解扇形统计图的特点。利用统计表生成条形统计图对比发现条形统计图的缺陷,引出需要一种新的统计图表现部分数量与总量的百分比从而引出课题需要扇形统计图。为什么叫扇形统计图?理解一个圆形表示的含义、每个扇形表示的含义,从而认识扇形统计图。

3、教学机智的生成教学实践中教育机智问题还要很好的修炼,做到很好的预设才能生成更好地教学问题,比如在提问条形统计图的局限性时,学生说它不能表现数据的变化趋势,的确是但是没有把握好这一问题,如果再问一问,喜欢每个项目的人数需要用折线统计图来表示吗?在什么情况下要用到折线统计图?这样不仅解决了书上练习二十五第四题的教学重点,同时也是根据统计的不同特点制作统计图综合分析能力的应用意识的培养。

4、再教设计

1、课堂上生成学生资源统计表显然内容浅显,浪费时间,不如将此部分内容放到课前准备好。

2、将估算教学作为一种渗透思想涉及在每个教学环节中,比如当出现算一算所占百分比的时候可以选择性的让学生先估一估。

第5篇:“弧长与扇形的面积”教学设计

“弧长与扇形的面积”教学设计

“弧长与扇形的面积”教学设计

姚志刚

(江苏省昆山市第二中学)

教学内容:

苏教版九年级数学145页到147页。

教学目标:

1.通过操作、归纳,会计算弧长和扇形面积。

2.认识特殊—一般—特殊在获得新知识过程中的重要作用,体验弧长和扇形面积的探究过程。

3.体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。

教学重点、难点:

重点:弧长和扇形面积公式的推导和有关计算。

难点:探索弧长和扇形面积公式及运用。

教学过程:

一、情境创设

1.以二百米赛跑画面引入课题。

2.某社区要请广告公司设计一张扇形的半径为1米的海报,收费标准是每平方米100元,那么社区应付多少钱?

设计意图:用生活中熟悉的情境激发学生的学习兴趣,营造良好的学习氛围,使学生认识到数学总是与现实问题密不可分。

二、主动探索,经历过程

1.半径为r的圆,周长是多少?

2.圆的周长可以看作是多少度的圆心角所对的弧?

3.你能求出半径为r的圆中圆心角分别为180°、90°、45°、1°所对的弧长分别是多少?

教师提出问题,引导学生分析弧长

和圆周长之间的关系,推导出n°的圆心角所对的弧长的计算公式。引导学生层层深入,逐步分析,量提问学生回答,相互补充,得出结论。

设计意图:探索一个新的知识要从学过的知识入手,经历特殊—一般—特殊的认知过程,寻找它们的联系,探究规律,得出结论。

三、实践应用

1.圆心角为110°,半径为4cm,则弧长是。

2.已知一条弧长为12π,该弧所对的圆心角为120°,则该弧所在圆的半径为。

设计意图:引导学生对所推导出公式进行简单应用,掌握弧长公式中弧长、半径、圆心角三者之间的换算关系。

四、主动探索

(1)创设情境,引出扇形。

(2)扇形定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

(3)判断五个图形是否是扇形。

(4)探索扇形面积公式。

①半径为r的圆,面积是多少?

②圆面可以看作是多少度的圆心角所对的扇形?

③你能求出半径为r的圆中圆心角分别为180°、90°、45°、1°所对的扇形的面积?

④若设⊙O半径为r,n°的圆心角所对的扇形面积为.设计意图:学生学以致用,在弧长公式的推导过程中,是由教师引导分析;而扇形面积公式完全由学生自己推导,锻炼他们的探索新知识的能力,体验成功的快乐。

五、实践应用

1.已知圆弧的半径为50cm,圆心角为120°,则圆弧的弧长是,圆弧组成的扇形面积是 .2.已知扇形的圆心角为120°,弧长为20π,扇形的面积是设计意图:对公式进行应用,寻找公式中有怎样的数量关

系。

六、记忆公式,并用弧长表示扇形面积

(1)比较扇形面积与弧长公式,你能用弧长表示扇形面积吗?

(2)见到这个公式,同学们能联想到什么面积公式?

设计意图:加强学生交流合作,并在合作交流的基础上尝试推导出扇形的面积和弧长之间的关系。

七、巩固拓展

1.把Rt△ABC的斜边AB放在直线l上,绕点B顺时针方向旋转,使点C落在直线l上的点C′处,设BC=1,(1)求在此运动过程中,点A所经过的路线长。

(2)求在此运动过程中,△ABC所扫过的面积。

2.如图1,圆A、B、C、D、E互相外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则五个扇形(阴影部分)的面积之和为 .3.如图2,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是______.

设计意图:通过拓展练习,培养学生实践能力,使他们的思维能力有所提升。

八、总结评价

1.谈谈这节课你学到了什么?有什么不明白的地方?

2.利用本节课所学,你能提出哪些问题?

九、教学反思

本节课从学生熟悉的问题情境引入,激发了学生的学习兴趣。在探究弧长和扇形的面积,通过从特殊到一般的思维方法、小组合作,符合新课程的教学理念。培养学生应用数学、探究总结和创新能力。由于内容不是很难,所以要求学生积极参与。在课堂教学中,坚持让每个学生做些练习,强化课堂练习,提高解决问题的能力。

第6篇:弧长和扇形的面积 教学设计

弧长和扇形的面积 教学设计

姜永娜

教学目标 知识与技能:

1.会计算弧长及扇形的面积。

2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。过程与方法:

1.通过识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。2.在探究弧长公式和扇形面积公式的过程中,体会“从特殊到一般”的数学思想方法。情感态度价值观:在合作交流中体验成功的快乐。教学重难点

重点:1.计算弧长和扇形面积;2.利用弧长和扇形面积公式进行计算。难点:理解公式的推导过程 教学媒体:多媒体 教学过程设计

一、复习引入

已知⊙O半径为R,⊙O的面积S是多少?S=πR2

我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.

扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。你能举例说出生活中的扇形吗?(比如扇子。)

问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?

问题2:请同学们判断,在同圆或等圆中,是否具有相同圆心角的扇形面积也相等呢?

学生同桌讨论,做出正确判断,老师予以补充说明。

结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。

二、做一做

认识了扇形,我们下面就来一起探究一下已知⊙O半径为R,如何求圆心角n°的扇形的面积

1.教师引导学生迁移推导弧长公式的方法步骤:

设置问题:圆的周长是多少?1°圆心角所对弧的长是多少?90°圆心角所对弧的长是多少?n°圆心角所对弧的长是多少?

学生独立思考,给出答案。(1)圆周长C=2πR;(2)1°圆心角所对弧长=

2r90;

12(3)90°圆心角所对弧长=

360r;

.(4)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;n°圆心角所对弧长=归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则2.一起探究扇形面积(教师组织学生对比研究):(1)圆面积S=πR2;

(2)圆心角为1°的扇形的面积=

1(弧长公式);

r2(3)圆心角为1°的扇形的面积=4

(4)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;(5)圆心角为n°的扇形的面积=

归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则

S扇形=

(扇形面积公式)

3.注意:(1)在应用扇形的面积公式S扇形=表示1°圆心角的倍数,它是不带单位的;

进行计算时,要注意公式中n的意义.n提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)

1S扇形= 2lR 想一想:这个公式与什么公式类似?(小组合作研究)

与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.

三、灵活应用

例 如图,⊙O的半径为10cm。(1)如果∠AOB=100°,求弧AB的长及扇形AOB的面积;(2)已知BC弧长为25πcm,求∠COB的度数。

学生:利用所学弧长及扇形面积的共式,充分探究,最后教师归纳总结。解:略。

四、巩固练习:配套练习册40页

1、2.

五、总结

知识:弧长及扇形面积公式

S扇形=,S=lR. 扇形方法能力:迁移能力,对比方法.

六、当堂检测:

1.已知一圆面积为16πcm2,其圆周上一段弧长为3πcm,则其所对圆心角为______. 2.已知一弧长为6πcm,弧所对的圆心角为60°,则扇形的面积为______,3.已知正三角形边长为1cm,那么以正三角形一边为弦,其外接圆上所对弧长为______. 4.已知一弧长为12πcm,其半径为24cm,那么此弧所对圆周角为______. 七:布置作业

第7篇:弧长和扇形面积课堂教学设计

弧长和扇形面积课堂教学设计

教学目标

1,知识与技能 掌握弧长与面积的计算公式,并会用公式解决一些实际问题 2.过程与方法:

经历探索弧长计算公式及扇形面积计算公式的过程,提高探索能力; 知道弧长及扇形面积公式后,能用公式解决问题,训练数学运用能力。3,情感态度与价值观

通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣,提高学习积极性,同时提高运用能力。

教学重点:

经历探索弧长及扇形面积计算公式的过程;会用公式解决问题; 教学难点:

探索弧长及扇形面积计算公式;用公式解决实际问题; 教学过程:

一、创设问题情境,引入新课

我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的—部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索。

二、探索研究,获取新知 探究一:教师活动:提出问题

制造弯形管道时,经常要先按中心线计算“展直长度”(教材120页图24.4-1中虚线的长度),再下料,这就涉及到计算弧长的问题。

学生活动:自主探究弧长的计算方法。

教师提示:可以把它分为几个部分,AC和BD的长我们知道,只需要求出AB段弧长,就能得出结果。

师:同学们,你们还记得圆周长的计算公式吗? 生:C=2 R 师:那圆的周长可以看作是多少度的圆心角所对的弧长? 生:是360°所对的弧长。

师:那我们再想,1°的圆心角所对的弧长是多少呢?n°的圆心角呢? 生:1°的弧长=教师总结:

在半径是R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2R,所

nR以n°的圆心角所对的弧长为: L=

180[教法]:让学生们理解后识记。

图24.4-1中所给的数据,由上面的弧长公式,可得AB弧 的长为 L=100900 ≈1570(mm)。

1802RnR;n°的弧长=。

180360探究二:扇形的面积

如下图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。

0A B

师:上图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为 n。的扇形面积占圆面积的几分之几?进而求出圆心角的扇形面积。

教师活动:

如果设圆心角是n°的扇形面积为S,圆的半径为R,那么扇形的面积为nR2nRS=,由于这个扇形对应的弧长L=,还可以推出扇形面积的另一个计360180算公式

S=1LR(这个公式最好在教师的引导下由学生推出)2[教法]:类比弧长的公式的探究方法自主探究扇形的面积的计算方法。

三、典型例题

例1:如图24.4-3,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(精确到0.01m2)。

OABC

解:如图24.4-3,连接OA、OB,作弦AB的垂直平分线,垂足为D,交 于点C。

∵OC=0.6,DC=0.3, ∴OD=OC-DC=0.3。

在Rt△OAD中,OA=0.6,利用勾股定理可得,AD=0.3。

在Rt△AOD中,OD= OA,∴∠OAD=30°。

∴∠AOD=60°,∠AOB=120°。有水部分的面积 S=S扇形OAB-S

OAB=1201×0.62-AB×OD 236010.63 ×0.3 2=0.12-≈0.22(m)2

四、课堂练习

1.有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°,求这段圆弧的半径R(精确到0.1m)。

a为半径的圆相2切于点D、E、F,求图中以D、E、F为顶点的封闭图形的面积。2.正三角形ABC的边长为a,分别以A、B、C为圆心,以

A DEB E C

五、小结

本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关。计算时要力求细心准确。

第8篇:《扇形》教学设计

扇形

教学内容:认识扇形(书P75—76)

教学目的: 1.通过观察对比体会扇形的特征,认识弧、圆心角及扇形。

2.了解扇形和圆的关系,能根据要求画出扇形。3.体会数学与实际生活的密切联系。

教学重难点:

1.认识弧、圆心角及扇形。2.理解和掌握扇形的特征。教学准备:

课件、圆规、直尺、量角器等。教学课时:共1 课时 教学过程:

一、复习铺垫 ,激趣导入。1.复习圆的各部分名称。2.出示复习题

一个底面是圆形的蒙古包,沿地面量得周长25.12m,它的占地面积是多少平方米?

3.导入

课件出示生活中常见的扇形物体。师:这些物体都分别叫什么? 这些物体的名称都含有“扇”字,那什么是扇形呢? 根据画面情境,你能说出一些扇形的物体吗?

4、揭示课题:在我们日常生活中,有很多扇形的物体,今天我们就来研究扇形。板书课题:认识扇形

二、自学新知 1.认识弧。(1)出示扇形图。

师:那什么是扇形呢,请同学们自学书P75,了解有关扇形的知识。(2)学习弧的概念。让学生看图后说说什么叫做弧?具备哪些条件?

师指图:这段彩色的线叫做“弧”。因为这条弧的两个端点分别是A和B,所以称这条弧为“弧AB”,弧是圆上的一部分。

课件出示概念:圆上A、B两点之间的部分叫做弧,读作:“弧AB”。(3)尝试画弧。

学生试着在自己的练习本上画弧。2.认识扇形。

(1)图中涂有蓝色部分是什么?(2)扇形的概念。

师指图:这块涂有颜色的图形就是扇形。师:大家能说说什么叫扇形吗?

(生回答后,师小结)一条弧和经过这条弧两端的两条半径所围成的图形叫做“扇形”。

(3)指导学生在练习本上画出扇形。

(4)教师指着屏幕上圆中扇形的另一边空白部分问学生,这个图形叫什么? 师明确:这个图形也是一条弧和经过这条弧的两端的两条半径围成的图形,所以也是一个扇形。

3.认识圆心角。

(1)师:你在书上还学到了什么?

课件显示:两条半径所夹的角∠AOB,它是圆心角。师:它的顶点在哪儿?”

师明确:像这样,顶点在圆心的角叫做圆心角。

(2)让学生在自己画的扇形中找圆心角,并标上∠1的标志。师:说一说自己画的∠1为什么也是圆心角。

师生共同总结:圆心角应该满足两个条件:一是角的顶点在圆心;二是角的两条边是圆的半径。

(3)巩固练习一:下面各图中,哪些角是圆心角?

巩固练习二:下面各图中的实线围成的图形是扇形吗? 师小结:扇形都是由“一条弧”和“经过这条弧两端的两条半径”所围成的图形。

4、讨论: 扇形与三角形的区别。

使学生明确三角形是由三条线段围成的,而扇形是由两条半径和一条弧(曲线)围成的图形。

5.师:在同一个圆中,扇形的大小与什么有关系呢? 学生小组内交流、讨论后,全班汇报。

师小结:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角大的扇形大,圆心角小的扇形小。

6.以半圆为弧的扇形的圆心角是多少度?以1/4圆为弧的扇形呢?

三、巩固练习

1.画一个半径是2 cm的圆,再在圆中画一个圆心角是100°的扇形。2.判断。

(1)顶点在圆上的角是圆心角。()(2)因为扇形是它所在圆的一部分,那么圆的一部分一定是扇形。()(3)在同一个圆内,圆心角越大,扇形也就越大。()(4)圆比扇形大。()(5)半圆也是一个扇形。()

四、课堂总结 这节课你学会了哪些知识?

五、布置作业 教材76页

1、4题。

六、板书设计

扇 形

扇形是圆上的一部分,∠AOB是圆心角。

第9篇:《扇形》教学设计

1.教学中注重用迁移法学习新知。《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。这样才能够充分发挥知识迁移的作用,实现知识的有效重组。本节课是在学生学习了圆的相关知识的基础上进行教学的。教学设计从扇形和圆的关系入手,借助知识的迁移来了解扇形的特征,有利于学生对新知的理解,便于学生记忆。2.运用现代信息技术这种有效的教学手段。《数学课程标准》指出:把现代信息技术作为学习数学和解决问题的工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。在教学弧、扇形、圆心角的过程中,利用PPT课件的动画演示讲解更为直观、生动、形象,使学生对新知的理解一目了然,也便于学生对扇形特征的理解和掌握。将信息技术与课程内容有机地进行结合,注重课件的有效性,为学生提供丰富的学习资源,充分发挥课件的效果,加深学生学习的印象,激发学生强烈的求知欲。课前准备教师准备 PPT课件 学情检测卡学生准备 大小不同的圆 圆规 直尺 彩笔教学过程⊙激趣导入课件出示生活中常见的扇形物体。师:这些物体分别叫什么?(学生依次回答:扇贝、扇形藻、折扇)师:这些物体的名称有什么共同点?学生回答后,师引出课题:这节课我们就来学习扇子形状的平面图形。在数学上,我们把这类图形称为“扇形”。(板书课题:扇形)设计意图:从生活中熟悉的事物中导入,直观形象,学生能很快建立扇形的表象,从而激发学生主动学习的热情,产生探索新知的欲望。⊙教学新课1.认识弧。课件出示扇形图。(1)用课件先画出一个虚线的圆,在圆上取A、B两点,再用彩色的线画出这两点间的圆的部分。(2)学习弧的概念。师指图:这段彩色的线叫做“弧”。因为这条弧的两个端点分别是A和B,所以称这条弧为“弧AB”,弧是圆上的一部分。课件出示概念:圆上A、B两点之间的部分叫做弧,读作:“弧AB”。(3)尝试画弧。学生试着在自己的练习本上画弧。教师课件显示出“弧AB”的反弧,让学生知道这也是一条弧。2.认识扇形。(1)课件演示:先出现彩色的OA、OB两条半径,同时在弧AB与半径OA、OB所围成的图形中涂上颜色。(2)扇形的概念。师指图:这个涂有颜色的图形就是扇形。师:根据刚才的演示和讲解,大家能说说什么是扇形吗?(生回答后,师小结)一条弧和经过这条弧两端的两条半径所围成的图形叫做“扇形”。(3)指导学生在练习本上画出扇形。(学生在练习本上尝试画出扇形)(4)教师指着屏幕上圆中扇形的另一边空白部分问学生,这个图形叫什么?(学生猜测,答案不唯一)师明确:这个图形也是由一条弧和经过这条弧的两端的两条半径围成的图形,所以也是一个扇形。3.认识圆心角。(1)课件显示:OA、OB两条半径闪动,然后问:“两条半径所夹的角∠AOB,它的顶点在哪儿?”师明确:像这样,顶点在圆心的角叫做圆心角。(2)让学生在自己画的扇形中找圆心角,并标上∠1的标志。问:说一说自己画的∠1为什么也是圆心角。师生共同总结:圆心角应该满足两个条件:一是角的顶点在圆心;二是角的两条边是圆的半径。(3)课件出示三个大小、方向不同的扇形图,让学生判断这些图形是不是扇形。师小结:这三个图形都可以称为扇形,因为它们都是由“一条弧”和“经过这条弧两端的两条半径”所围成的图形。4.三角形和扇形的区别。(1)出示一个扇形和一个三角形。问:这两个图形一样吗?它们之间有什么区别?(2)在学生回答问题的基础上,教师小结:左边的图形是扇形,右边的图形是三角形。它们之间的区别是:扇形是由两条半径和一条弧围成的图形;三角形是由三条线段围成的图形。尽管有的图形的两条边也是圆的半径,但是第三条边不是弧,而是线段,这样的图形不能称为扇形,它是三角形。弧是圆的一部分,是曲线,而线段是直线的一部分。5.设疑:在同一个圆中,怎样判断扇形的大小?学生小组内交流、讨论后,全班汇报。师小结:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角大的扇形大,圆心角小的扇形小。设计意图:由观察图片和图形得出概念,有利于学生加深记忆,对比扇形和三角形的不同,有利于深入掌握扇形的特征。⊙巩固应用1.下面的图形中哪些角是圆心角?在括号里画“√”。2.判断。(1)顶点在圆上的角是圆心角。()(2)因为扇形是它所在圆的一部分,所以圆的一部分一定是扇形。()(3)在同一个圆内,圆心角越大,扇形也就越大。()(4)圆比扇形大。()(5)半圆也是一个扇形。()3.画一个半径是2 cm的圆,再在圆中画一个圆心角是100°的扇形。设计意图:练习题层层深入,考查学生对扇形特征的理解情况,有利于学生对新知识的巩固。⊙课堂总结说一说这节课你学会了哪些知识。⊙布置作业教材76页

1、4题。板书设计 扇 形扇形是圆上的一部分,∠AOB是圆心角。

第10篇:弧长和扇形面积.教学反思

《弧长和扇形面积》教学反思

一、教学构思:

本次授课思路:圆周长公式——弧长公式,由此类比导出扇形面积公式。重点强调培养学生解决实际问题的能力。首先是与学生一起复习圆的周长、面积计算公式,接着用教材中的题目引入新课,与学生一起推导弧长与扇形面积的计算公式。由复习到新授的衔接还算流畅,但对学生的思维启发可能不够到位,所以学生在实际应用中用得不熟练,对公式中的字母还得想一想才能反应过来代表哪个量。

本节课主要内容是弧长及扇形面积的计算。不仅强调学生会运用公式,而且要理解算法的意义。引例的设计主要考虑了学生生活实际,放弃了课本的引例,选择了很多实际问题,特别是自动喷水装置探索其喷灌范围、计算扇子的贴纸部分面积等例子,这样能够激发学生的学习欲望,调动学生积极性,让学生积极动手、动脑,解决实际问题。使学生在经历数学知识发生、发展、形成的“再创造”活动中,获取广泛的数学活动经验,进而促进自身的主动发展。

二、课堂教学反思:

本节课的内容一般来说老师会把重点放在公式的理解和熟练运用上,对于九年级的学生来说这很重要,而且弧长公式和扇形面积公式的推导过程也比较容易理解。但是这样可能导致中等及以下学生因为某些概念、细节的不理解或者不懂,造成学习的障碍。结合学生的实际,认真分析学生可能出现障碍的地方,逐步引导学生观察、比较,从基本的概念入手,处理好各个思维的转折点,在注重基础的同时发展学生的数学能力,关注了全体学生的发展。另外在提问的处理上进行分层,避免死板的教公式、记公式的老套,希望能激发学生思维,体现教师引导者的身份。

针对学生的实际情况,在课堂中关注大多数学生能够参与到教学中来很重要,存在的不足之处是,于九年级的学生来说,成绩较好学生的思维明显受到限制,不能最大限度的培养数学优生的数学思维。如何在关注全体学生的同时让优生最大限度的发展,最终体现课程标准中让不同的人在数学上得到不同的发展的理念,是我们数学课堂教学一直要思考的问题。

本节课的不足还在于时间的分配上不是很合理,由于在学生在探索弧长时我担心引导措施不到位,导致时间过长,后面的教学环节比较吃紧,对学生在新知的应用上没有足够的时间。有待于在今后的教学中注意这方面的问题,以便进一步提高课堂教学效率。

三、教材处理的反思:

《弧长和扇形面积》课后反思: 任何新知识获得,都是要经过“实践——认识——再实践——再认识”的过程,这个过程,本身蕴含着一个再创造的过程。从教学这个意义上来讲,就强调了以学生为中心,引导学生自主学习。同时,培养学生的合作能力。可是上完这节课,我感触颇深,有欣慰的,也有遗憾的。欣慰的是自己对“先学后教”的课堂模式有了进一步的认识;遗憾的是这堂课存在不少问题。在此我对自己发现的问题进行反思。首先,揭示目标时三言两语,没能使学生产生深刻的印象。其次,对学生实际情况的把握不到位,自认为出现了以下两个问题:一是推导公式的用时多了;二是对设计的几个问题中的重点引导不足,使部分学生对公式的探究过程仍存在一定的疑点。再次在例题评析时脱离了学生的理解。应该根据学生的疑难进行引导,但我却从自己的理解出发了。接着因上面环节用时过长明显影响了当堂训练的开展。总之,通过对这堂课的反思,发现了问题,这就是收获。只有这样发现问题,找出问题,才能促使自己去探索,去解决问题,在发现和解决问题中提高自身教育教学的水平,使自己的课堂更好的服务于“人人学有用的数学”。

弧长和扇形面积教学设计(共12篇)

《扇形》教学设计

扇形教学设计

扇形统计图教学设计

扇形统计图教学设计(共3篇)

本文标题: 扇形面积教学设计(共10篇)
链接地址:https://www.dawendou.com/jiaoxue/jiaoxuesheji/16882.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《扇形面积教学设计(共10篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有