多边形面积教学设计
第1篇:多边形面积计算教学设计
人教版小学五年级数学上册《多边形面积的计算》教案教学反思设计 教学内容:九年义务教育六年制小学教科书数学第九册第64~66页,练习十六第1~3题。
教学目的:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1.照课本第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影片设备的也可制成投影片。
2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。
3.每个学生准备一个平行四边形(可以用课本第137页的图剪下来贴在厚纸上。)和一把剪刀。
教学过程:
一、复习
1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
二、新课 这节课我们共同研究平行四边形面积的计算。(板书:平行四边形面积的计算)
1.用数方格的方法计算平行四边形的面积。
(1)我们学习计算长方形的面积时,曾经用数方格的方法来计算面积的大小,现在我们学习习近平行四边形面积的计算,也先在方格图上数一数它的面积是多少?请打开书看第64页左边的平行四边形,每一个方格表示一平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢? 启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结。从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得精确。特别是较大的平行四边形,如像教室这么大就不好数了。想一想,能不能像计算长方形面积那样,也找出计算平行四边形面积的计算方法。2.通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。(2)教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
(3)引导学生比较。(黑板上在剪拼成的长方形上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。(4)引导学生总结平行四边形面积计算公式。这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
(5)教学用字母表示平行四边形的面积公式。板书:S=a×h,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)看课本中讲解的相应的内容,并完成第65页中间的“填空”。3.应用总结出的面积公式计算平行四边形的面积。
(1)课本第66页例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成课本第66页“做一做”第1、2题。共同订正。(3)把自己准备的平行四边形量一量,底、高各是多少厘米?再求出面积。
三、巩固练习练习十六第1题。
四、全课小结 这节课我们共同研究了什么? 怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、布置作业 练习十六第2、3题。
教材先给出方格纸上的平行四边形和长方形,从数图形中的方格数引入平行四边形的面积。利用数方格的方法来计算面积仍然是一种计量面积的方法。遇到图形中的边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。教材通过实际数方格的个数让学生学会这种计算面积的方法。教材中左右两个方格图上,平行四边形的底与长方形的长,平行四边形的高与长方形的宽分别相等,暗含着两种图形的联系。长方形画在方格纸上,实际是给出了它的长和宽。通过数和算,使学生知道两个图形的面积相等;再通过比较,使学生看出左右两个图形的底与长、高与宽分别相等,从而初步看到平行四边形和长方形的面积和它们的边长和高之间有一定的联系。这样就为学生进一步探寻平行四边形面积的计算方法做了准备。接着教材再提出问题,平行四边形的面积怎样计算,能不能转化为长方形来算。转化的方法是一种数学方法,利用这种方法,可以把新知识转化为旧知识,从而使新问题得到解决。在教学一个数除以小数时,已经用到了转化方法。即根据被除数和除数都扩大相同倍数商不变的性质,把除数是小数的除法转化成学过的除数是整数的小数除法。教材在这里教学平行四边形的面积时利用转化方法,通过学生动手操作、探索,把平行四边形转化成已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。教材改变了过去简单的割补方法,在引导学生操作时渗透了平移思想。教材用图说明平移的方法,把从左面剪下的直角三角形,底边沿着原来的底边向右平着移动,直到直角三角形的左下角的顶点和原平行四边形右下角的顶点重合,直角三角形的斜边和原平行四边形的右边重合为止。通过这样操作,学生把一个平行四边形转化为一个与它面积相同的长方形。然后让学生自己找出长方形的长、宽与原来平行四边形的底、高的关系,推导出平行四边形的面积计算公式。接着通过例题和“做一做”巩固新学的计算公式。“做一做”中第1题图形的底和高的数值都很简单,但图形位置各不相同。这样可使学生加深对图形的认识,正确分清平行四边形的底和高。第2题出现一个接近平行四边形的地面图,让学生计算它的面积,以便加强与实际的联系。练习题由浅入深,而且不全是按照所给的数据直接计算面积的,也有运用图形知识的题目。还注意培养学生动手测量的能力。如第3题让学生自己动手量平行四边形的底和高,这就要求学生首先要会找出哪是底,哪是高,然后才能量出相应的底和高。第6题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻两边组成的角度大小无关。第8题和第9题是联系实际的题目,需要先计算土地的面积,再根据数量关系解答问题。第11题渗透函数思想,通过木条围成的图形的变化,以及面积、周长的变化,可以加深学生对长方形和平行四边形之间的联系的理解,使学生知道4根木条围成的长方形面积最大,左右两边的木条斜度越大,围成的平行四边形的高越小,从而面积也越小。
第2篇:多边形面积的练习教学设计
《多边形面积的练习》教学设计
【教学内容】
《义务教育课程标准实验教科书·数学》(苏教版)六年制五年级上册第二单元综合练习。【教材简析】
本节课是在学生学习了平行四边形、三角形、梯形的面积计算基础上进行系统整理,根据知识的重难点以及学生的易错易混点进行合理的习题创编,提升学生的数学素养。通过让学生动手实践,自主探索,合作交流,沟通各种面积公式及其推导过程的内在联系,解决“为什么”的问题;再通过不同层次的练习,巩固已学过的各种多边形的面积公式,提高应用公式解决简单实际问题的能力,发展学生的思维能力,落实减负增效,提升学生的数学素养。【教学目标】
1.通过练习,让学生进一步熟悉多边形面积的计算方法及公式的推导过程,加深对平面图形面积计算间关系的理解。
2.让学生能熟练运用平行四边形、三角形、梯形的面积计算公式解决与这些图形有关的实际问题。
3.培养学生的空间想象力及创新意识,不断发展空间观念,适当渗透转化的数学思想和联系,进一步产生对数学的亲切感,激发学生学习数学的兴趣。 【教学重点】
利用平行四边形、三角形、梯形的面积计算公式解决实际问题。【教学难点】
理解各图形之间的联系,灵活解决实际问题。【教具准备】
多媒体课件 【教学过程】
课前谈话: 同学们咱们又见面了,还记得我来自哪里吗?我们胶州新建了一座少海风景区,它是胶州首个4A级国家风景区,想去看看吗?(课件出示少海图片)这节课我们就一起去少海游览一番,让我们一边游览一边发现那里面有什么数学问题。
一、创设情境,回顾梳理 1.创设情境,启发导课
谈话:同学们请看,目前要在这片空地上种植一块花圃,大家猜猜看,它可能是什么形状?(课件呈现空地)
学生可能回答:长方形、平行四边形、三角形等。2.回顾梳理(1)解决问题
谈话:同学们想到了这么多图形,景区管理处初步选择了这样三种设计方案,(课件呈现缺少底和高的平行四边形、三角形、梯形花圃)你能说说它们的面积分别是多少吗?
课件呈现数据后,接着提问:现在可以了吗?谁来说说平行四边形花圃的面积是多少?怎样计算的?三角形花圃呢?梯形呢?
(2)梳理公式
谈话:同学们做得都很好,你们在计算它们的面积时,先想到了什么?那你能说说它们的面积公式用字母怎么表示吗?
根据学生的回答板书字母公式。(3)突破底与对应高的问题
谈话:大家利用公式求出了花圃的面积,同学们看7和8同样是平行四边形的底,为什么选择8×6而不用7×6?而三角形中告诉了三条底,为什么只选择这条底与高相乘呢?
学生可能会回答:底要和对应的高相乘。教师随机追问:那为什么要用底与它的对应高相乘呢?
谈话:看来大家有困惑,没关系,接下来让我们一起来回顾一下这些图形面积公式的推导过程,我相信只要同学们边观察边思考,就一定会想明白其中的道理。课件演示平行四边形面积公式的推导过程,组织学生借助课件交流平行四边形面积公式的推导过程,理解底要与对应高相乘。
追问:那三角形呢?谁能结合三角形面积公式的推导过程给大家解释一下吗?
学生可能回答:用两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底就是三角形的底,平行四边形的高正好是三角形的高。
根据学生回答课件演示三种拼的过程。
小结:看来我们在计算平行四边形和三角形面积时,一定要注意用底和它对应的高相乘。
【设计意图:创设游少海情境意在激发学生对生活中蕴含数学的美的感悟,设计求花圃面积这一生活化的情境,旨在加深学生对已有知识的记忆与理解,既让学生在解决问题的过程中回顾梳理三种图形的面积公式,更重要的通过回顾公式的推导过程帮助学生理解为什么要用底和对应高相乘。】
二、深化练习,巩固拓展 1.基本练——求花圃的面积 已在第一环节梳理知识中完成。2.变式练——求草坪的高
谈话:花圃的面积我们解决了,工作人员还在草坪中修了一条鹅卵石小路,你能求出这条小路有多长吗?(课件呈现)
提问:要求小路的长,就是求什么?根据学生回答追问:想一想要求高,先求什么?自己在练习纸上做出来。
学生独立完成,教师组织学生进行组间交流。
谈话:平行四边形草坪中小路有多长?三角形草坪中小路的长是多少? 在求第二个问题时,学生可能出现: 生1:12×6÷2=36(平方米)
36÷9=4(米)生2: 12×6÷2=36(平方米)
36×2÷9=8(米)
生3:12×6÷9=8(米)教师引导学生交流自己的想法。
谈话:你的思路真清晰,当我们知道了三角形的面积和底,要求高,可以用底乘高得到与三角形等底等高的平行四边形的面积,然后再除以底,得到这条底所对应的高,也就是三角形的高。(课件呈现)
提问:这个同学错在哪里?三角形的面积除以底能得到高吗?以后我们在做这类题时,你认为要提醒大家注意什么?
【设计意图:本环节中的练习设计注意培养学生的逆向思维和创造性思维。重点引导学生理解三角形的面积乘2求的是什么。】
3.综合练——计算组合图形的面积 (1)利用“加加减减”的方法求面积
谈话:景区里还有一些问题需要同学们去解决,你们敢继续接受挑战吗?在这块平行四边形草坪旁边是一片底为4米,高为6米的三角形的竹林,草坪和竹林一共占地多少平方米?(课件呈现)
学生独立解决后交流做法,可能会出现:平行四边形面积加上三角形面积或直接求梯形面积。
小结:刚才同学们用部分面积加部分面积的方法,我们可以把它看成“加”的方法。(板书:加)
谈话:同学们继续看,在三角形草坪周围增设了健身区,你能求出健身区的面积吗?(课件呈现)
学生交流做法:用梯形的面积减去空白三角形的面积就是健身区的面积,列式为:(12+18)×6÷2-12×6÷2 谈话:同学们这种用大面积减小面积的方法我们可以把它看成“减”的方法。(板书:减)小结:其实我们在求组合图形面积时经常会用到这种“加加减减”的方法。(完善板书:加加减减)
(2)减少信息,布置学生课后探究
谈话:刚才同学们的表现很出色,继续看,现在你还能求出健身区的面积吗?请同学们课后自己探究一下到底该怎么做,下节课我们再交流。(课件呈现)
【设计意图:综合练习是在上一题的基础上的发展应用,学生在这个环节体会了解决问题方法的多样化,最后一题设计成缺少上底的情况,让学生课后探索,旨在引导学生利用课堂所学知识自主探究本题的解决办法,从而提升学生自主学习的能力。】
4.发展练——求喷池面积
谈话:刚才我们解决了有关花圃和草坪的问题,现在,让我们一起去音乐广场看一看。课件出示:少海风景区原来有一个平行四边形喷池,它的底是5米,现在进行了修整,将它的一条底延长5米,面积就增加15平方米,现在这个喷池的面积是多少平方米?(1)学生独立做。(2)组织学生交流。
学生到展台讲解,可能出现: 生1:15×2÷5=6(米)
5×6=30(平方米)30+15=45(平方米)生2:15×2÷5=6(米)
(5+5+5)×6÷2=45(平方米)生3:15×(1+2)=45(平方米)根据学生交流教师适时小结:虽然他们解题的思路不一样,但都用到了画图的方法。看来,在解决图形问题中,画图确实是一种很好的策略。(板书:画图)
【设计意图:创设学生喜闻乐见的情境串,从基本题入手,过渡到变式题,发展到综合题,最后延伸到拓展题,让知识在基本题中得到巩固,在变式题中得到加深并能灵活运用,在综合题中得到对比沟通,在拓展题中得到升华启智。】
三、总结提升
谈话:同学们,快乐的少海之旅就要结束了,我们在观光游览的同时,还进行了多边形面积的练习(板书课题)。这节课你有什么收获?老师希望同学们从学会了什么知识,获得了哪些方法,有什么感受等方面全面进行总结,先在小组里说一说。
组织全班交流,学生可能会说:通过今天的学习,求平行四边形、三角形、梯形面积时更熟练了,在解决图形问题时可以用到加加减减、画图等方法,通过今天的学习感到生活中处处有数学等。
教师总结提升:老师希望同学们在以后的学习中,都能像今天这样从各个方面进行全面总结,这种回顾梳理知识的能力,对我们今后的学习会有很大的帮助。
第3篇:《多边形面积的练习》教学设计
《多边形面积的练习》教学设计
胶州市北京路小学 黄涛
【教学内容】
《义务教育课程标准实验教科书 数学》(苏教版)六年制五年级上册第二单元综合练习。【教材简析】
本节课是在学生学习了平行四边形、三角形、梯形的面积计算基础上进行系统整理,根据知识的重点难点以及学生的易错易混点进行合理的习题创编,提升学生的数学素养。通过让学生动手实践,自主探索,合作交流,沟通各种面积公式及其推导过程的内在联系,解决“为什么”的问题;再通过不同层次的练习,巩固已学过的各种多边形的面积公式,提高应用公式解决简单实际问题的能力,发展学生的思维能力,落实减负增效,提升学生的数学素养。【教学目标】
1.通过练习,进一步熟悉多边形面积的计算方法及公式的推导过程,加深对平面图形面积计算间关系的理解。
2.能利用平行四边形、三角形、梯形的面积计算公式解决与这些图形有关的实际问题。 3.培养空间想象力及创新意识,不断发展空间观念,适当渗透转化的数学思想和联系的、变化的看问题的思想。【教学重点】
利用平行四边形、三角形、梯形的面积计算公式解决实际问题。【教学难点】
理解各图形之间联系,灵活解决实际问题。【教具准备】
多媒体课件 【教学过程】
课前谈话: 同学们咱们又见面了,还记得我来自哪里吗?胶州是一个美丽的地方,到处都充满了美的事物,少海新城就是其中的代表之一,让我们一睹为快好吗?(播放视频)看了这段视频你有什么感受?今天我们就一起去少海新城游览一番,让我们一边游览一边发现那里面有什么数学问题。准备好了吗?上课。
一、创设情境,回顾梳理 1.创设情境,启发导课
谈话:同学们请看,目前要在这片空地上种植一块花圃,大家猜猜看,它可能是什么形状?
学生可能回答:长方形、平行四边形、三角形等。
揭题:同学们想到了这么多图形,今天咱们就一起走进这些图形,上一节多边形面积的练习课。(板书课题)
2.回顾梳理 (1)解决问题
谈话:景区管理处初步选择了这样三种设计方案,(课件呈现缺少底和高的平行四边形、三角形、梯形花圃)你能说说它们的面积分别是多少吗?
学生回答:不能。追问:为什么不能?
谈话:(课件呈现数据)现在你能计算了吗?快速的写在练习纸上。
组织学生交流求花圃面积的做法。(2)梳理公式
谈话:同学们做的都很好,你们在计算它们的面积时,先想到什么? 学生回答。
追问:那你能说说它们的面积公式用字母怎么表示吗? 根据学生的回答板书字母公式。(3)突破底与对应高的问题
谈话:大家利用公式求出了花圃的面积,同学们看7和8同样是平行四边形的底,为什么选择8×6而不用7×6?而三角形中告诉了三条底,为什么只选择这条底与高相乘呢?
学生回答:底要和对应的高相乘。
追问:那为什么非要用底与它的对应高相乘呢?
谈话:看来大家有困惑,没关系,接下来让我们一起来回顾一下这些图形面积公式的推导过程,我相信只要同学们边观察边思考,就一定会想明白其中的道理。
课件演示平行四边形面积公式的推导过程。
追问:那三角形呢?谁能结合三角形面积公式的推导过程给大家解释一下吗?
学生回答:将两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底就是三角形的底,平行四边形的高正好是三角形的高。
根据学生回答课件演示三种拼的过程。
小结:看来我们在计算平行四边形和三角形面积时,一定要注意用底和它对应的高相乘。
【设计意图:创设游少海情境意在激发学生对生活中蕴含数学的美的感悟,设计求花圃面积这一生活化的情境,旨在加深学生对已有知识的记忆与理解,既让学生在解决问题的过程中回顾梳理三种图形的面积公式,更重要的通过回顾公式的推导过程帮助学生理解为什么要用底和对应高相乘。】
二、深化练习,巩固拓展 1.基本练——求花圃的面积 已在第一环节梳理知识中完成。2.变式练——求草坪的高
谈话:草坪的面积我们解决了,工作人员还在草坪中修了一条鹅卵石小路,你能求出这条小路有多长吗?(课件呈现)
提问:要求小路的长,就是求什么?
根据学生回答追问:对就是求9米这条底对应的高,想一想要求高,先求什么?自己在练习纸上做出来。
学生独立完成,教师组织学生进行组间交流。谈话:平行四边形草坪中小路有多长? 学生回答。
提问:三角形草坪中小路的长是多少? 学生可能出现:
生1:12×6÷2=36平方米
36÷9=4米
生2: 12×6÷2=36平方米
36×2÷9=8米
谈话:说说你是怎么想的? 引导学生交流自己的想法。
谈话:说得真有条理,同学们来看当我们知道了三角形的面积和底,要求高,别忘了先用三角形的面积乘2,得到等底等高的平行四边形的面积,然后再除以底,得到这条底所对应的高。(课件呈现)
提问:这个同学错在哪里?三角形的面积除以底能得到高吗?以后我们在做这类题时,你认为要提醒大家注意什么?
【设计意图:本环节中的练习设计注意培养学生的逆向思维和创造性思维。重点引导学生理解三角形的面积乘2求的是什么。】
3.综合练——计算组合图形的面积 (1)利用“加加减减”的方法求面积
谈话:景区里还有一些问题需要同学们去解决,敢继续接受挑战吗?在这块平行四边形草坪旁边是一片底为4米,高为6米的三角形的竹林,草坪和竹林一共占地多少平方米?(课件呈现)
学生独立解决。学生交流做法:
生1:平行四边形面积加上三角形面积 生2:求梯形面积
小结:刚才同学们用部分面积加部分面积的方法,我们可以把它看成“加”的方法。(板书:加)
谈话:同学们继续看,在三角形草坪周围增设了健身区,你能求出健身区的面积吗?(课件呈现)
学生独立解决。
学生交流做法:用梯形的面积减去空白三角形的面积就是健身区的面积。
(12+18)×6÷2-12×6÷2
谈话:同学们这种用大面积减小面积的方法我们可以把它看成“减”的方法。(板书:减)
小结:其实我们在求组合图形面积时经常会用到这种“加加减减”的方法。(完善板书:加加减减)
(2)减少信息,利用转化思想解决问题
谈话:刚才同学们的表现很出色,继续看,现在你还能求出健身区的面积吗?先自己想一想,然后和小组的同学说说你的想法。(课件呈现缺少上底的图形)
组织学生交流。
谈话:请同学们请看,蓝色三角形和黄色三角形有什么关系? 追问:为什么它们的面积相等?
根据学生回答,借助课件演示利用等底等高的三角形面积相等将两个阴影部分的三角形转化成一个大三角形,渗透转化思想,让学生体验转化思想在数学上的应用。(板书:转化)
【设计意图:综合练习是在上一题的基础上的发展应用,学生在这个环节体会了解决问题方法的多样化,在课件演示的过程中感受运用转化的策略解决问题在数学中的重要性。】
4.发展练——求喷池面积
谈话:刚才我们解决了有关花圃和草坪的问题,现在,让我们一起去音乐广场看一看。课件出示:少海风景区原来有一个平行四边形喷池,它的底是5米,现在进行了修整,将它的一条底延长5米,面积就增加15平方米,现在这个喷池的面积是多少平方米?
(1)学生独立做。(2)组织学生交流。
谈话:谁愿意把自己的解决方法介绍给大家? 学生到展台讲解,可能出现: 生1:15×2÷5=6(米)
5×6=30(平方米)30+15=45(平方米)
生2:15×2÷5=6(米)
(5+5+5)×6÷2=45(平方米)生3:15×(1+2)=45(平方米)根据学生交流教师适时小结:虽然他们解题的思路不一样,但都用到了画图的方法。看来,在解决图形问题中,画图确实是一种很好的策略。(板书:画图)
【设计意图:创设学生喜闻乐见的情境串,从基本题入手,过渡到变式题,发展到综合题,最后延伸到拓展题,让知识在基本题中得到巩固,在变式题中得到加深并能灵活运用,在综合题中得到对比沟通,在拓展题中得到升华启智。】
三、总结提升
谈话:同学们,快乐的少海之旅就要结束了,我们在观光游览的同时,还解决了很多有价值的数学问题。通过这节课的学习你有什么收获?老师希望同学们从学会了什么,获得了哪些方法,有什么感受等方面全面进行总结,先在小组里说一说,教师引导学生交流并进行评价。
教师总结提升:老师希望同学们在以后的学习中,都能像今天这样从各个方面进行全面总结,这种回顾梳理知识的能力,对我们今后的学习会有很大的帮助。
【设计意图:通过总结,既能够使学生加深对所学内容本质的理解和深层次思考,从而将所学知识纳入自己的认知结构,又提升了学生的梳理和概括能力。】
第4篇:《多边形面积》教学反思
《多边形面积》这一单元教学上周都已经结束并及时进行了测评。
回顾这一单元的教学,我个人比较注重学生参与知识的形成过程,即多边形面积公式的推导过程。这一单元的多边形主要是平行四边形、三角形、梯形三个图形。而每个图形面积公式的推导都是在前面已学的图形面积公式基础上学习的。在教学时,我一般提前让学生做好学具,如上平行四边形时,就让学生先剪好平行四边形,再通过引导提问引发学生思考:能否将平行四边形转化成我们以前学过的某个图形来研究呢?这之前,学生其实只学过长方形和正方形两种面积的求法,所以学生可以很快猜到转化成什么样的图形来研究,之后,我再放手让学生去尝试。当学生通过小组或同桌的交流将平行四边形转化成长方形后,我再进一步引导学生思考:现在的图形与原来的图形哪些地方有联系呢?这样我们可以得出平行四边形的面积公式是怎样的?也许有人会觉得有必要这样麻烦吗。结论是这么简单的,绕来绕去。可是这一推导过程其实对学生思维能力以及对数学这门学科趣味性和动手能力的培养是非常有价值,学生对公式的理解绝大部分都很透彻。后面三角形和梯形面积公式的推导过程都是按照这个模式来教学的。这多年来教这个内容我都坚持这么做,可能上这样的课我花费的时间要比别人多,但我觉得非常值。
但是经过测评,我也发现这一单元中学生存在许多共性问题:一是单位换算问题。这一单元都是有关面积的问题,自然和面积单位分不开,面积单位是学生
三、四年级学得内容,时间长了,单位换算进率和方法一部分学生出现了遗忘,还有一部分一点都不记得(当初学时都糊里糊涂)。这学期我们重点是研究面积公式,所以我没有投入精力给学生复习,有大部分学生在这方面失分。另外解决问题时单位不统一学生没有注意到,这些说明学生审题不够细致所至。第二个问题是拼成的平行四边形和原有的三角形之前的关系,特别是等底等高这个条件学生的理解还不够,虽然我口头有作过强调,但这个知识点最初出现时,也就是在上三角形面积公式的推理时我没有重点突出来强调,导致学生理解得不够深刻,所以后来再讲效果也不太理想,这些以后再上时一定要注意。第三个问题是在组合图形面积求法中。一是找不准对应的条件,如三角形要找出对应的底和高,特别是一些复杂的图形,学生有困难,这些在平时教学中要加强引导学生去找,去认。二是运用分割法求组合图形的面积后来要合在一起,添补法最后要将补起来的大图形减掉小图形面积,这些中偏下的学生容易遗忘,平时教学时要加以强调。
第5篇:多边形面积整理与复习教学设计
《多边形的面积整理与复习》教学设计
教学内容:义务教育教科书五年级上册数学103页。教学目标:
1、熟练掌握平行四边形、三角形、梯形的面积计算公式,进一步理解图形特征、面积公式之间的内在联系,构建知识网络。
2、灵活运用公式解决一些简单的实际问题,进一步体会数学与生活的联系,感受数学的价值,增强学习兴趣。
教学重点:回顾平面图形面积公式推导过程,建构知识体系。教学难点:感悟平面图形之间的内在联系。
教学准备:课件、学生课前自主复习办手抄报、整理卡、平面图形学具和教具 教学过程:
一、创设情境,再现知识
师:漫步我们的校园,随处可见图形的身影(看大屏幕),同学们会计算它们的面积了吗?(师出示数据)
指名只列式不计算。
教师黑板上张贴长方形及公式。
小结:面积计算在生活中的应用十分广泛。
师:这节课我们一起对第六单元多边形的面积进行整理复习。这一单元我们学习了哪些图形的面积?(张贴图形:三角形、梯形、平行四边形;板书:基本图形、组合图形、不规则图形)结合课前的自主复习,你觉得我们应该复习些什么知识?(学生自主发言)(教师板书:公式、推导、联系、应用、注意……)
二、合作梳理 构建网络
1、梳理基本图形的公式和推导
师:以小组为单位,每人选择平行四边形、三角形、梯形中的任意一种图形说一说它们的面积计算公式,知其然更要知其所以然,并借助手中的学具重点交流这些计算公式的推导过程。注意:一定要说清楚是由哪个图形怎样推导出来的。
学生以小组为单位回顾,教师巡视。
学生汇报,其他同学补充或者质疑,完善表达。(学生借助教具,并张贴三个公式)
师:同学们对三个公式及推导还有疑问吗?(师在板书:公式、推导上打√)
2、讨论联系,构建网络
师:大家有没有发现,这几种平面图形面积的推导过程有什么相同的地方?(板书:转化)转化是一种重要的数学思想。
小组活动:
(1)说一说平行四边形、三角形、梯形是怎么转化的?转化成了谁?(2)根据这种转化关系,将这些图形按照一定的顺序排一排,张贴在整理卡上,同时借助一些符号或文字,把它们联系成一张网络图,表示出图形与图形的联系。
教师巡视,学生张贴自己的网络图。汇报想法。其他学生评价质疑。师小结:真是百花齐放,百家争鸣,这些思考都很好地反映了转化的数学思想。从左往右看能从前面的图形推导出后面的图形(教师顺势摆好教具),从右往左看,后面的图形能转化成前面的图形如果是直角三角形或直角梯形还可以直接转化为长方形(教师画箭头),我们可以发现长方形是这些图形的“根”。
师:这几种图形本身之间是有着紧密的联系的。(课件:梯形的上底是0时,变三角形,梯形的上底等于下底时又变成了平行四边形),正因为它们之间有着密切的联系,才能够实现相互的转化,从而解决新问题。
3、梳理组合图形面积,加强联系
师:如果我们把几个基本图形连在一起,就变成什么图形?(课件演示)怎样求组合图形的面积?(板书:分、补)无论是分或是补,其实都是转化成基本图形。(板书箭头)
4、回顾不规则图形面积,完善网络 师:不规则图形呢?
小结:估算(数方格和转化)(板书),近似地转化成基本图形求面积。(板书箭头)
三、分层练习形成技能
师:经过大家的努力,我们将这一单元的知识整理成网络图,理清了知识的来龙去脉。老师相信同学们对这部分知识一定有了更深更系统的认识。接下来老师带你们去练习园迎接挑战,锤炼本领。
(一)我过基础关(基础性题组)我会算:
1、求出下面图形的面积。只列式不计算
2、组合图形
全班交流解题思路。选择一种自己喜欢的方法计算出组合图形的面积,同桌互判(课件再订正答案)
教师小结:要先明确解题思路,并把每个基本图形的面积求对,才能确保正确。
(二)我闯变式关(形成性题组)
我会辩:判断(指名按顺序逐个完成)
(1)两个等底等高的三角形可以拼成一个平行四边形。()(2)梯形的面积等于平行四边形面积的一半。()(3)平行四边形的底越大,它的面积就越大。()我会填:填空(将答案写在练习本上,指名订正说明理由)(1)一个平行四边形的面积是24平方厘米,它的高是3厘米,它的底是()厘米。
(2)一个平行四边形和一个三角形等底等高,平行四边形的面积是30平方厘米,三角形的面积是()平方厘米。
(3)三角形的面积是14平方分米,高是4分米,底是()分米。(4)将一个长方形的框架挤压成一个平行四边形后,平行四边形的面积比长方形的面积()。
四、收获提炼 评价反思
师:孔子曰:温故而知新。相信今天的复习能给大家带来新的发现和体会。谁来交流一下自己的复习收获?学生交流复习收获。
师:你们的收获可真多呀,让我们带着这些收获再次走进生活,去发现和解决生活中更多的面积问题。
五、拓展链接 整体提升
1、走进劳动基地(提问题,并选择与面积相关的乘法解答)
师:在我们小院里,小兔和鸽子的家就是一个图形大世界!仔细观察,这里有哪些用面积计算的问题?(学生提问题)
预设:制作这样一个鸽舍(或鸽舍旁边的储物箱)要用多少木料? 如果把正面除窗户的部分重新涂油漆,涂油漆的面积是多少?需要多少千克?花多少钱?
鸽舍的玻璃面积是多少? 房顶是多少平方米?
围成的面积是多少?用多少块地砖?多少块墙砖?
师选择其中一个问题出示要求计算:储物箱前面上底0.4米,下底0.6米,高0.2米,需要多少平方米的木料?如果涂油漆,每平方米花12元,要用多少钱?
2、回归课的开始(教师提问题,解答与面积相关的除法问题)每棵花占地300平方厘米,求需要多少棵花秧?
师小结:我们在解决实际问题时,认清面积与其他数量之间的关系很重要。课下同学们可以选择自己感兴趣的问题去解决。
3、全课总结:课前我们自主复习,并办了整理复习小报,可谓异彩纷呈,集聚观赏性和可读性,今天的作业是各小组将小报相互学习,并评选优秀小报,在教室展览,全班学习。
第6篇:多边形面积计算教学反思
多边形面积计算教学反思
整整两个星期我们都在学习“多边形的面积计算”,因为初次教五年级,所以每节课的备课时间总是花到上课时间的三到四倍,不过总算今天把这章内容讲完了,下面我来谈谈我的教学感受:
小学阶段的多边形是指平行四边形、三角形和梯形,它们的面积计算是以长方形、正方形的面积计算为基础,由于四年级时学生们通过剪一剪,画一画,分一分把长方形和正方形分成边长是1厘米的小正方形推导出它们的面积公式,掌握了计算方法。因此五年级学习多边形的面积计算时应充分利用已具备的学习基础。首先学习的是平行四边形,在教学时我先出示一组面积相等的长方形和平行四边形让学生猜一猜它们的大小;再把它们放到方格纸上让学生通过数方格得出它们的面积相等;然后教师提出问题:我们可不可以把平行四边形通过分一分、拼一拼转化成长方形呢?接下来让学生们动手操作。有的同学沿平行四边形的高把它分成两个梯形;有的同学沿它的高把平行四边形分成一个直角三角形和一个直角梯形;然后利用前面学习的平移知识转化成一个长方形,从而推导出平行四边形的面积公式。
教学三角形的面积计算时,师问:我们怎样应用所学的方法探究三角形的面积计算公式呢?于是学生们三个一组,四个一堆就开始讨论、操作。有的剪了两个完全一样的直角三角形拼成一个长方形;有的剪了两个完全一样的等腰直角三角形拼成了一个正方形;有的剪了两个锐角三角形拼成了一个平行四边形;还有的同学剪了一个大三角形,过三角形的一个顶点作一条高,再过高的中点作一条和底边平行的平行线,然后沿平行线剪开,把大三角形分成一个小三角形和一个梯形,把小三角形旋转后与梯形拼成一格平行四边形。最后他们都利用自
己拼的图形推导出了三角形的面积计算公式。
在学习梯形面积计算公式的推导时,我更加相信学生们的能力了,首先从学生的生活实际出发,让学生知晓生活中很多时候都要计算梯形的面积,从而引发学生探究梯形面积的学习欲望,让他们充分调动自己已有的知识经验,放手让学生把梯形转化成前面学过的会计算面积的图形,自主探究出了很多种推导面积公式的方法,培养了他们的创新思维能力和自主学习能力。
在教学“多边形面积公式的推导”时,我注重把握以下几点:
1、充分应用前面掌握的学习策略来学习新知识。
2、重视培养学生的动手能力。
3、重视发展学生的个性,鼓励学生拼出多种多样的图形,让学生选择自己喜欢的图形来推导面积计算公式。
总之,数学教学不仅是一门科学,而且是一门艺术。为了让学生在愉快的气氛中最大限度的调动他们的积极性和主动性,使他们轻松愉快的学习,我们更应该备好每一堂课。
多边形面积计算教学反思
胶东一小
徐海英
第7篇:《多边形面积单元》教学反思
《多边形面积单元》教学反思
《多边形面积单元》教学反思
《多边形的面积》这单元教学内容包括四部分:平行四边形的面积,三角形的面积,梯形的面积和组合图形的面积。
教学时要注重让学生经历面积公式的推导过程,让学生亲自经历思索、剪、拼、摆的操作活动。在思维训练上注重渗透“转化”思想,引领学生运用“转化”的方法,通过对比探究图形与转化后图形间有什么关系,从而得出图形面积计算的方法。
同时也要注重同一个图形不同的推导方法,像梯形的面积计算公式,除了可以用两个完全一样的梯形拼成一个平行四边形,其中一个梯形的面积是这个平行四边形面积的一半,我引导学生思索另外的推导方法。有的学生想出了可以沿对角线连接,把梯形分成两个三角形,还有的同学想出了把梯形分成一个平行四边形和一个三角形等。这样多种方法的推导,开阔了学生的思路,进一步巩固了“转化”的思想。
对于组合图形面积的计算,我则渗透了两种思维:一是分割法,将组合图形分成若干个已会计算面积的单一图形,这几个单一图形面积总和便是这个组合图形面积;二是添补法,根据图形特征将这个组合图形补成已学过的一个单一大图形,用这个大图形面积减去补充部分的图形面积便是原组合图形面积。
