当前位置: 首页 > 教学资源 > 教学设计

等腰三角形判定教学设计(共3篇)

作者:cnszfc | 发布时间:2020-06-15 06:55:57 收藏本文 下载本文

第1篇:等腰三角形的判定教学设计

等腰三角形的判定教学设计

一、教学目标:

1.使学生掌握等腰三角形的判定定理及其推论;

2.掌握等腰三角形判定定理的运用;

3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4.通过自主学习的发展体验获取数学知识的感受;

5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:

等腰三角形的判定定理

三、教学难点

性质与判定的区别

四、教学流程

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.

要让学生自己推证这两条推论.

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3.应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠

1、∠2的关系.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可.

补充例题:(投影展示)

1.已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在中,(已知)

(等边对等角)

(已知)

(等角对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在 中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF.EF=DE-DF EF=BE-CF 小结:

(1)等腰三角形判定定理及推论.

(2)等腰三角形和等边三角形的证法.

七.练习

教材 P.75中

1、2、3.

八.作业

教材 P.83 中 1.1)、2)、3);

2、3、4、5.

五、板书设计

第2篇:等腰三角形的判定教学设计

§12.3.1.2 等腰三角形判定

教学目标

(一)教学知识点

探索等腰三角形的判定定理.

(二)能力训练要求

通过探索等腰三角形的判定定理 及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

(三)情感与价值观要求

通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.

教学重点

等腰三角形的判定定理的探索和应用。

教学难点

等腰三角形的判定与性质的区别。教具准备

作图工具和多媒体课件。

教学方法

引以学生为主体的讨论探索法; 教学过程

Ⅰ.提出问题,创设情境

1.等腰三角形性质是什么?

性质1 等腰三角形的两底角相等.(等边对等角)

性质2等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.

(等腰三角形三线合一)

2、提问:性质1的逆命题是什么?

如果一个三角形有两个角相等,那么这个三角形是等腰三角形。这个命题正确吗?下面我们来探究: Ⅱ.导入新课

大胆猜想:

如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”). 由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.[例1]已知:在△ABC中,∠B=∠C(如图).

求证:AB=AC. 教师可引导学生分析:

BA12DC联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.(学生板演证明过程)

证明:作∠BAC的平分线AD. 在△BAD和△CAD中

12, BC,ADAD, ∴△BAD≌△CAD(AAS).

∴AB=AC.

提问:你还有不同的证明方法吗?(由学生口述证明过程)

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

符号语言:在△ABC中 ∵ ∠B=∠C ∴ AB=AC(等角对等边)

4、等腰三角形的性质与判定有区别吗? 性质是:等边 等角 判定是:等角 等边

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.

下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.

(演示课件)

[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

这个题是文字叙述的证明题,•我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).

求证:AB=AC.

同学们先思考,再分析.(由学生完成)

要证明AB=AC,可先证明∠B=∠C.

接下来,可以找∠B、∠C与∠

1、∠2的关系.

(演示课件,括号内部分由学生来填)

证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).

看大屏幕,同学们试着完成这个题.

(课件演示)

已知:如图,AD∥BC,BD平分∠ABC.

求证:AB=AD.

(投影仪演示学生证明过程)

证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).

又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).

下面来看另一个例题.

(演示课件)

• 例

2、已知等腰三角形的底边等于a,底边上的高等于b,你能用尺规作图的方法作出

EA12DBCADBCM A

这个等腰三角形吗? a

b

作法:(1)作线段BC,使BC=a;

(2)作BC的垂直平分线MN,交BC于D;(3)在MN上截取DA=h,得A点;

(4)连结AB、AC,则△ABC即为所求等腰三角形。

3、思考:在△ABC中,已知,BO平分∠ABC,CO平分∠ACB.过点O作直线EF//BC交AB于E,交AC于F.(1)请问图中有多少个等腰三角形?说明理由.(2)线段EF和线段EB,FC之间有没有关系?若有是什么关系?

Ⅲ.随堂练习

(一)课本P79

1、2、3、4.

Ⅳ.课时小结

1、等腰三角形的判定方法有下列几种: ①定义,②判定定理。

2、等腰三角形的判定定理与性质定理的区别是:条件和结论刚好相反。

3、运用等腰三角形的判定定理时,应注意 在同一个三角形中。Ⅴ.作业布置:

学力水平:必做42页 1------7题

选做 42页 8-----10题

4 12.

3.1.2 等腰三角形判定

马静云

香河县第六中学

§

第3篇:等腰三角形的判定教学设计

13.3.1等腰三角形的判定教学设计

教学目标

(一)知识与能力:

1.理解并掌握等腰三角形的判定定理,2.综合应用等腰三角形的性质定理和判定定理

(二)过程与方法:

通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力。

(三)情感、态度与价值观:

通过引导学生观察,发现等腰三角形的判定方法,让学生从实践中获得成功体验,增强学习兴趣。

教学重难点

重点:等腰三角形的判定定理的探索和应用。难点:等腰三角形的判定与性质的区别。

二、教学过程

(一)复习导课

1、复习等腰三角形的定义,等腰三角形的性质。

设计意图:为本节等腰三角形的判定做铺垫,让学生把知识很好的联系起来.2、“等腰三角形的两底角相等”,反过来说成立吗?猜想。 设计意图:这样导入课题,不仅可以复习相关知识,也可以激发学生不断学习的热情。

(二)探究新知

1、实践

请同学们用直尺和量角器画△ ABC,使∠ B= ∠ C,再用刻度尺量一量线段AB,AC的长,然后,把你的△ ABC剪下来,折叠,观察线段AB,AC的长。

(学生画图、测量,剪纸,折叠)

想一想:你能从上面的结果中发现了什么规律?从实践再次猜想

设计意图:培养学生的动手能力,从实践中得出等腰三角形的判定定理。

2、证明:

思考:如何证明?请根据上述命题画出图形,并写出已知、求证。已知:如图,在△ABC中,∠B=∠C,求证:AB=AC

B C A(学生先独立完成、再小组讨论,整理证明过程。)设计意图:探究新知采取提出问题、实践操作、归纳验证这一方式,体现了知识发生、发展和形成的过程,让学生体会到观察、猜想、验证的思想方法。

3、归纳

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)数学符号语言: 在△ABC中 ∵ ∠B=∠C

∴ AB=AC(等角对等边)

设计意图:归纳证明的结论,让学生学会如何使用。

三、例题展示

例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。(先写已知和求证)(学生先独立思考,并将证明过程写在微卡上。)

E 1 A 2 D B C 设计意图:及时巩固、反馈,开方式的变式训练,培养学生思维的发散性。

四、当堂检测

1.在△ABC中,∠A的相邻外角是110º,要使△ABC是等腰三角

3 形,则∠B=_______。

2.在一个三角形中,等角对________;等边对___________。3.如果等腰三角形底边上的高线和腰上的高线相等,则它的各内角的度数是_______________。

4.先求证以下三个结论,然后归纳你发现的结论。(1)已知:OD平分∠AOB,EO=ED,求证:ED∥OB(2)已知:OD平分∠AOB,ED∥OB,求证: EO=ED(3)已知: ED∥OB,EO=ED,求证:OD平分∠AOB

E A C D

五、课堂小结:

请你谈一谈本节课学习的感受。

O B 本节课学习了等腰三角形的判定定理,在判定定理中,是由角相等→边相等,在等腰三角形的性质1中,是由边相等→角相等

设计意图:通过比较,加深对等腰三角形性质定理和判定定理的认识,正确地理解和应用两者。

六、课后反思

等腰三角形教学设计

等腰三角形性质教学设计

平行线判定教学设计

三角形判定教学设计

等腰三角形的判定与性质练习卷

本文标题: 等腰三角形判定教学设计(共3篇)
链接地址:https://www.dawendou.com/jiaoxue/jiaoxuesheji/48925.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《等腰三角形判定教学设计(共3篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有