证明线面平行
第1篇:证明线面平行
证明线面平行
一,面外一条线与面内一条线平行,或两面有交线强调面外与面内
二,面外一直线上不同两点到面的距离相等,强调面外
三,证明线面无交点
四,反证法(线与面相交,再推翻)
五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面
线面平行
【直线与平面平行的判定】
定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
【判断直线与平面平行的方法】
(1)利用定义:证明直线与平面无公共点;
(2)利用判定定理:从直线与直线平行得到直线与平面平行;
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。
【平面与直线平行的性质】
定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。
注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
本题就用到一个关键概念:重心三分中线
设E为BD的中点,连接AE,CE
则M在AE上,且有AM=2ME
N在CE上,且有CN=2NE
在三角形ACE中,因为,EM:EA=1:3
EN:EC=1:3
所以,MN//AC
AC属于平面ACD,MN不在平面ACD内,即无公共点
所以,MN//平面ACD
第2篇:线面平行证明
线面平行证明“三板斧”
第一斧:从结论出发,假定线面平行成立,利用线面平行的性质,在平面
内找到与已知直线的平行线。
例1:如图正方体ABCDA1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由。
练习:
如图,已知四棱锥PABCD的底面ABCD的底面ABCD是菱形,点F为PC中点,求证:PA//平面BFD
第二斧:以平面外的直线作平行四边形
D
例2:如图,正方体ABCDA1B1C1D1,E为A1B1上任意一点,求证:AE//平面DC
1练习:
如图,已知三棱柱ABCA1B1C1中,E为B1C1的中点,F为AA1的中点,求证:
A1E//平面B1CF
第三斧:选证明面面平行,再由线平行的定义过度到线面平行。
例3:如图,四棱锥PABCD,底面ABCD为正方形,E,F,G分别为PC,PD,BC的中点,求证:PA//平面EFG
练习:如图,在直三棱柱(侧棱与底面垂直的三棱柱)D为BC的中点,求证:
AC1//平面AB1D
B
C
总结:线面平行证明的三种方法中,多数题目其实都可以用第一、二种方法得到解决,因此前二种方法是首先。第三种方法虽然证明过程长,但其思路是很固定的,实践过程中更容易为同学们所掌握。一个题目可能有几种证法,同学们练习时可以三种方法都去试一试,看看有几种办法可以解决。在熟悉以后,解题过程中可按照招式一、二、三的顺序依次去思考。
1.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点.
求证:MN//平面PAD.
2.如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.P
E
C
A
B
3.如图,在直三棱柱ABC-A1B1C1中, D为AC的中点,求证:AB1//平面BC1D;
AA
D
C
B1
C1
4.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.5.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
6.如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD.
A
7.a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是
A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,b
C.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在8.设平面∥β,A,C∈,B,D∈β,直线AB与CD交于S,若AS=18,BS=9,CD=34,则CS=_____________.9.如下图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()
A.不存在B.有1条C.有2条D.有无数条
10.如图所示:设P
上的点,AMDN且MBNP
11.求证:MN//平面PBC如图所示,在棱长为a的正方体ABCDA1B1C1D1中,E,F,P,Q分别是BC,C1D1,AD1,BD的中点.
(1)求证:PQ//平面DCC1D1(2)求PQ的长.
(3)求证:EF//平面BB1D1D.
第3篇:线面,面面平行证明题
线面,面面平行证明
一.线面平行的判定
1.定义:直线和平面没有公共点,则直线和平面平行.2.判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行.
3.符号表示为:a,b,a//ba//
二.面面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行符号语言:_____________________________________________________________________
选择题
1.已知直线l
1、l2,平面α, l1∥l2, l1∥α, 那么l2与平面α的关系是().A.l1∥αB.l2αC.l2∥α或l2αD.l2与α相交
2.以下说法(其中a,b表示直线,表示平面)
①若a∥b,b,则a∥②若a∥,b∥,则a∥b
③若a∥b,b∥,则a∥④若a∥,b,则a∥b
其中正确说法的个数是().A.0个B.1个 C.2个D.3个
3.已知a,b是两条相交直线,a∥,则b与的位置关系是().A.b∥B.b与相交C.bαD.b∥或b与相交
4.如果平面外有两点A、B,它们到平面的距离都是a,则直线AB和平面的位置关系一定是(A.平行B.相交C.平行或相交D.AB
5.如果点M是两条异面直线外的一点,则过点M且与a,b都平行的平面().A.只有一个 B.恰有两个 C.或没有,或只有一个 D.有无数个
6.已知两条相交直线a、b,a∥平面α,则b与平面α的位置关系()
A b∥αB b与α相交CbαDb∥α或b与α相交
7.不同直线m,n和不同平面,,给出下列命题:
//m//n
①mm//
n//
②m//
mm,n异面
③n
其中假命题有()
A0个B1个C2个D3个
8.若将直线、平面都看成点的集合,则直线l∥平面α可表示为()
AlαBlαCl≠αDl∩α=
9.平行于同一个平面的两条直线的位置关系是()
A平行B相交C异面D平行或相交或异面
10.下列命题中正确的是()
① 若一个平面内有两条直线都与另一个平面平行,则这两个平面平行
②若一个平面内有无数条直线都与另一个平面平行,则这两个平面平行
③若一个平面内任何一条直线都平行于零一个平面,则这两个平面平行
④若一个平面内的两条相交直线分别平行于零一个平面,则这两个平面平行
A.①③B.②④C.②③④D.③④
1.)
证明题:
1.如图,D-ABC是三棱锥,E,F,G,H分别是棱AB,BC,CD,AC的中点.求证:FGH.
2.平面与△ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面.3:在四面体ABCD中,M、N分别是面△ACD、△ABC的重心,在四面体的四个面中,与MN平行 的是哪几个面?试证明你的结论.平面
4 D是直三棱柱ABC—A1B1C1的AB边上的中点,求证: AC1∥面B1CD。
C A1B
1B
5.在四棱锥S-ABCD中,底面ABCD为正方形,E、F分别是AB、SC的中点,求证: EF∥面SAD
E
B
C
6、已知:△ABC中,∠ACB=90°,D、E分别为AC、AB的中点,沿DE将△ADE折起,使A至A′的位置,取AB的中点为M,求证:ME∥平面ACD
7.在正方体ABCD—A1B1C1D1中,P、Q分别是AD
1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1。
8.如图2-3-7所示,正三棱柱ABC—A1B1C1中,D
是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论.9.正方体ABCD—A1B1C1D1中,E, F分别是AB,BC的中点,G为DD1上一点,且D1G:GD=1:2,ACBD=O,求证:平面AGO∥平面D1EF
AD
C
A B
10.在正方体ABCD-A1B1C1D1中,E、F、G、P、Q、R分别是所在棱AB、BC、BB、AD、DC、DD的中点,求证:平面PQR∥平面EFG。
C
E B
11.直三棱柱ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M、N分别是A1B
1、AB的中点:求证:平面AMC1//平面NB1C.
12.如图,在三棱锥P-ABC中,D,E,F分别是棱PA,PB,PC的中点,求证:平面DEF∥平面ABC
B
第4篇:线面平行证明题
线面平行证明题
1.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是().A.异面B.相交C.平行D.不能确定
2.若直线a、b均平行于平面α,则a与b的关系是().A.平行B.相交C.异面D.平行或相交或异面
3.已知l是过正方体ABCD—A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线,下列结论错误的是().A.D1B1∥lB.BD//平面AD1B
1C.l∥平面A1D1B1D.l⊥B1 C1
4.在下列条件中,可判断平面α与β平行的是().A.α、β都平行于直线l
B.α内存在不共线的三点到β的距离相等
C.l、m是α内两条直线,且l∥β,m∥β
D.l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β
5.下列说法正确的是().A.如果两个平面有三个公共点,那么它们重合B.过两条异面直线中的一条可以作无数个平面与另一条直线平行
C.在两个平行平面中,一个平面内的任何直线都与另一个平面平行
D.如果两个平面平行,那么分别在两个平面中的两条直线平行
6.下列说法正确的是().A.直线外一点有且只有一个平面与已知直线平行
B.经过两条平行线中一条有且只有一个平面与另一条直线平行
C.经过平面外一点有且只有一条直线与已知平面平行
D.经过平面外一点有且只有一个平面与已知平面平行
7.已知P是正方体ABCD-A1B1C1D1棱DD1上任意一点,则在正方体的12条棱中,与平面ABP平行的是.8.已知P是平行四边形ABCD所在平面外一点,E、F分别为
AB、PD的中点,求证:AF∥平面PEC
9.在正方体ABCD-A1B1C1D1中,E、F分别为棱BC、C1D1的中点.求证:EF∥平面BB1D1D.DA
10.如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG.B
D11.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC(1)求证:MN//平面PAD;
(2)若E在PC上,CECP,过ADE做一平面与PB交与F点,是确定F点位置。
12.已知四棱锥P-ABCD中, 底面ABCD为平行四边形.点M、N、Q分别在PA、BD、PD上, 且PM:MA=BN:ND=PQ:QD.求证:平面MNQ∥平面PBC.13.如图,在四棱锥P—ABCD中,底面ABCD是平行四边形,E为 侧棱PC上一点且PA//面BDE,求
14.在正方体AC1中 ,PEPC的值。
C
A
AEAA1
,过ED1和B作出正方体的截面
A1
′
E
第5篇:构造平行四边形证明线面平行
1、已知线段PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点。(1)求证:MN//平面PAD;
(2)当∠PDA=45°时,求证:MN⊥平面PCD;
2、如图,正三棱柱ABC—A1B1C1中,AB=2,AA1=1,D是BC的中点,点P在平面BCC1B1内,PB1=PC1=2.(I)求证:PA1⊥BC;
(II)求证:PB1//平面AC1D;
3、(本题满分14分)如图,平行四边形ABCD中,BDCD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中点,G是AE,DF的交点.⑴求证: GH//平面CDE;⑵求证: BD平面CDE.4、如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,ABAE,FAFE,AEF45
(I)求证:EF平面BCE;
(II)设线段CD、AE的中点分别为P、M,求证: PM∥平面
BCE
5、(本小题满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。(I)求证:AF//平面BCE;(II)求证:平面BCE⊥平面CDE;
6、直棱柱ABCDA1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB2AD2CD2.
(Ⅰ)求证:AC⊥平面BB1C1C;(Ⅱ)在A1B1上是否存一点P,使得DP
与平面BCB1与平面ACB1都平行?证明你的结论. B1CD
B
D C
变题:求证:(1)A1B⊥B1D;(2)试在棱AB上确定一点E,使A1E∥平面ACD1,并说明理由.
7、如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PABC1AD.(1)求证:平面PAC⊥平面PCD;(2)在棱PD上是否存在一点E,使CE//平面PAB?
2若存在,请确定E点的位置;若不存在,请说明理由.8、已知直角梯形ABCD中, AB//CD,ABBC,AB1,BC2,CD1过A 作AECD,垂
足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.(1)求证:
BC面CDE;(2)求证:FG//面BCD;(Ⅲ)在线段AE上找一点R,使得面BDR面DCB,并说明理由.D D C G E A B 2F C
A B
第6篇:线线、线面平行垂直的证明
空间线面、面面平行垂直的证明
12.在正方体ABCD-A1B1C1D1中,E、F分别为AB、BC的中点,(Ⅰ)求证:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。
D'
3.如图,在正方形ABCDA'B'C'D',A'(1)求证:A'B//平面ACD';
(2)求证:平面ACD'平面DD'B。
A
4.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证: (1)FD∥平面ABC;(2)AF⊥平面EDB.C'
C
B
5.如图,在正方体ABCDA1B1C1D1中,O是AC和BD的交点.求证: (Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1平面AB1D1.
DA
C1
C
(5题图)
6.如图,长方体ABCDA1B1C1D1中,ABAD1,AA12,点P为
DD1的中点。
(1)求三棱锥DPAC的体积;(2)求证:直线BD1∥平面PAC;(3)求证:直线PB1平面PAC.C1
D1
B1
A1
P
DC
B
A
7.如图,在四棱锥PABCD,底面ABCD是正方形,侧棱
PD底面ABCD,PDDC,E是PC的中点,作EFPB于点F。
(1)证明:PA//平面EDB;(2)证明:DEBC
(3)证明:PB平面EFD。
8.ABCDA1B1C1D1是长方体,底面ABCD是边长为1的正方形,侧棱
A
AA12,E是侧棱BB1的中点.(Ⅰ)求证:AE平面A1D1E;
(Ⅱ)求三棱锥AC1D1E的体积.
