平行线证明
第1篇:平行线证明题
平行线证明题
直线AB和直线CD平行
因为,∠AEF=∠EFD.所以AB平行于CD
内错角相等,两直线平行
EM与FN平行因为EM是∠AEF的平分线,FN是∠EFD的平分线,所以角MEF=1/2角AEF,角EFN=1/2角EFD
因为,∠AEF=∠EFD,所以角MEF=角EFN
所以EM与FN平行,内错角相等,两直线平行
2第五章相交线与平行线试卷
一、填空题:
1、平面内两条直线的位置关系可能是或。
2、“两直线平行,同位角相等”的题设是,结论是。
3、∠A和∠B是邻补角,且∠A比∠B大200,则∠A=度,∠B=度。
4、如图1,O是直线AB上的点,OD是∠COB的平分线,若∠AOC=400,则∠BOD=
0。
5、如图2,如果AB‖CD,那么∠B+∠F+∠E+∠D=0。
6、如图3,图中ABCD-是一个正方体,则图中与BC所在的直线平行的直线有条。
7、如图4,直线‖,且∠1=280,∠2=500,则∠ACB=0。
8、如图5,若A是直线DE上一点,且BC‖DE,则∠2+∠4+∠5=0。
9、在同一平面内,如果直线‖,‖,则与的位置关系是。
10、如图6,∠ABC=1200,∠BCD=850,AB‖ED,则∠CDE0。
二、选择题:各小题只有唯一一个正确答案,请将正确答案的代号填在题后的括号内
11、已知:如图7,∠1=600,∠2=1200,∠3=700,则∠4的度数是()
A、700B、600C、500D、400
12、已知:如图8,下列条件中,不能判断直线‖的是()
A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=1800
13、如图9,已知AB‖CD,HI‖FG,EF⊥CD于F,∠1=400,那么∠EHI=()
A、400B、450C、500D、550
14、一个角的两边分别平行于另一个角的两边,则这两个角()
A、相等B、相等或互补C、互补D、不能确定
15、下列语句中,是假命题的个数是()
①过点p作直线BC的垂线;②延长线段MN;③直线没有延长线;④射线有延长线。
A、0个B、1个C、2个D、3个
16、两条直线被第三条直线所截,则()
A、同位角相等B、内错角相等
C、同旁内角互补D、以上结论都不对
17、如图10,AB‖CD,则()
A、∠BAD+∠BCD=1800B、∠ABC+∠BAD=1800
C、∠ABC+∠BCD=1800D、∠ABC+∠ADC=1800
18、如图11,∠ABC=900,BD⊥AC,下列关系式中不一定成立的是()
A、AB>ADB、AC>BCC、BD+CD>BCD、CD>BD
19、如图12,下面给出四个判断:①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁内角;④∠1和∠4是内错角。其中错误的是()
A、①②B、①②③C、②④D、③④
三、完成下面的证明推理过程,并在括号里填上根据
21、已知,如图13,CD平分∠ACB,DE‖BC,∠AED=820。求∠EDC的度数。
证明:∵DE‖BC(已知)
∴∠ACB=∠AED()
∠EDC=∠DCB()
又∵CD平分∠ACB(已知)
∴∠DCB=∠ACB()
又∵∠AED=820(已知)
∴∠ACB=820()
∴∠DCB==410()
∴∠EDC=410()
22、如图14,已知AOB为直线,OC平分∠BOD,EO⊥OC于O。试说明:OE平分∠AOD。
解:∵AOB是直线(已知)
∴∠BOC+∠COD+∠DOE+∠EOA=1800()
又∵EO⊥OC于O(已知)
∴∠COD+∠DOE=900()
∴∠BOC+∠EOA=900()
又∵OC平分∠BOD(已知)
∴∠BOC=∠COD()
∴∠DOE=∠EOA()
∴OE平分∠AOD()
四、解答题:
23、已知,如图16,AB‖CD,GH是相交于直线AB、EF的直线,且∠1+∠2=1800。试说明:CD‖EF。
24、如图18,已知AB‖CD,∠A=600,∠ECD=1200。求∠ECA的度数。
五、探索题(第27、28题各4分,本大题共8分)
25、如图19,已知AB‖DE,∠ABC=800,∠CDE=1400。请你探索出一种(只须一种)添加辅助线求出∠BCD度数的方法,并求出∠BCD的度数。
26、阅读下面的材料,并完成后面提出的问题。
(1)已知,如图20,AB‖DF,请你探究一下∠BCF与∠B、∠F的数量有何关系,并说明理由。
(2)在图20中,当点C向左移动到图21所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?
(3)在图20中,当点C向上移动到图22所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?
(4)在图20中,当点C向下移动到图23所示的位置时,∠BCF与∠B、∠F又有怎样的数量关系呢?
分析与探究的过程如下:
在图20中,过点C作CE‖AB
∵CE‖AB(作图)
AB‖DF(已知)
∴AB‖EC‖DF(平行于同一条直线的两条直线平行)
∴∠B+∠1=∠F+∠2=1800(两直线平行,同旁内角互补)
∴∠B+∠1+∠2+∠F=3600(等式的性质)
即∠BCF+∠B+∠F=3600
在图21中,过点C作CE‖AB
∵CE‖AB(作图)
AB‖DF(已知)
∴AB‖EC‖DF(平行于同一条直线的两条直线平行)
∴∠B=∠1,∠F=∠2(两直线平行,内错角相等)
∴∠B+∠F=∠1+∠2(等式的性质)
即∠BCF=∠B+∠F
直接写出第(3)小题的结论:(不须证明)。
由上面的探索过程可知,点C的位置不同,∠BCF与∠B、∠F的数量关系就不同,请你仿照前面的推理过程,自己完成第(4)小题的推理过程。
第2篇:平行线的证明
优毅教育2014年3月22日春季数学同步提高课导学案设计人:杜老师学生:
第八章平行线的有关证明
一、知识点归纳
(一)关于命题、定理及公理
1.对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的。
2.判断一件事情的句子,叫做。 3.每个命题都由和两部分组成。4.正确的命题称为,不正确的命题称为。想要判定一个命题是假命题只需要,而要说明一个命题是真命题则需.(二)平行线的性质及判定
判定:(1)(公理)(2)(3)性质:(1)(公理)(2)(3)
1.如图1,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是()
A.∠2+∠3=180°B.∠1+∠5=180°
C.∠4=∠7D.∠1=∠8
5.公认的真命题称为公理 (所有公理)6.推理的过程称为。7.经过证明的真命题称为。
8.由一个公理或定理直接推出的定理,叫做这个公理或定理的同步练习:
1.把命题“对顶角相等”改写成“如果„„那么„„”形式为。 2.请给出命题:“如果两个数的积是正数,那么这两个数一定都是正数”是(真命题或假命题),理由:______________________________________。3.下列语句不是命题的是()
A.2008年奥运会的举办城是北京B.如果一个三角形三边a,b,c满足a=b+c,则这个三角形是直角三角形C.同角的补角相等D.过点P作直线l的垂线4.下列命题是真命题的是()
c
4 a3 25b
7图1图23.如图2,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()
A同位角相等两直线平行 B.同旁内角互补,两直线平行 C内错角相等两直线平行D平行于同一条直线的两直线平行4.已知,如右图AB∥CD,若∠ABE = 130°,∠CDE = 152,则∠BED =__________.AFB
E
5、如下图,平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.
6、如下图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度是.A.a一定是负数B.a0
C.平行于同一条直线的两条直线平行
D.有一角为80°的等腰三角形的另两个角都为50° 5.举例说明“两个锐角的和是锐角”是假命题.第5题图
中考(平行线)
1.(山东济宁)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70方向到达B地,然后再沿北偏西20方向走了500m到达目的地C,此时小霞在营地A的A.北偏东20方向上B.北偏东30方向上C.北偏东40方向上D.北偏西30方向上 5.(湖南郴州)下列图形中,由ABCD,能得到12的是()
6.(2010湖北襄樊)如图1,已知直线AB//CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150° B.130° C.120° D.100°
图1.
2.(山东威海)如图,在△ABC中,∠C=90°.若BD∥AE,7.(甘肃)如图,AB∥CD,EFAB于E,EF
交CD 于F,已知160°,则2()∠DBC=20°,则∠CAE的度数是 A.30°B.20°C.25°D.35° A.40°
B.60°D C.70°D.80°E A
B A E3.(山东聊城)如图,l∥m,∠1=115º,∠2=95º,则
∠3=()8.如图1,直线a∥b,C与a、b均相交,则
=()
A.120ºB.130ºC.140ºD.150º
4.(山东省德州)如图,直线AB∥CD,∠A=70,∠C=40,则∠E等于
第2题图
C9.(荷泽)如图,直线PQ∥MN,C是MN上一点,CE交
PQ于A,CF交PQ于B,且∠ECF=90°,如果∠FBQ=50°,则∠ECM的度数为
A.60° B.50° C.40° D.30°
M
Q N
(A)30°(B)40°(C)60°(D)70°
C 5题图
10.(新疆维吾尔)如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a、b上,已知∠1=55°,则∠2的度数为()
A.45°B.35°C.55°D.125°
11.(2010贵州遵义)如图,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是 A.80°B.100°C.110°D.120 °
15.(福建三明)如图,已知∠C=100°,若增加一个条件,使得AB//CD,试写出符合要求的一个条件:。
(三)三角形的内角和外角的定理
1.三角形内角和定理:。 2.三角形一个外角等于和它不相邻的两个内角的和。
12.(2010广东肇庆)如图1,AB∥CD,∠A=50°,∠C=∠E,则∠C等于()
B.25°
D.40°
3.三角形的一个外角大于任何一个和它不相邻的内角。
1、(2011•昭通)将一副直角三角板如图所示放置,使含30°
角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
13.(2010山东日照)如图,C岛在A岛的北偏东50o方向,C岛在B岛的北偏西40方向,则从C岛看A,B两岛的视角∠ACB等于.
o
A、45°B、60°
C、75°D、85°
2、(2011•台湾)如图中有四条互相不平行的直线L
1、L
2、L
3、L4所截出的七个角.关于这七个角的度数关系,下列何者正确()
14.(2010山东烟台)将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____________。
A、∠2=∠4+∠7B、∠3=∠1+∠6C、∠1+∠4+∠6=180°D、∠2+∠3+∠5=360°
3、(2011•台湾)若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()
4、(2011•台湾)若钝角三角形ABC中,∠A=27°,则下列何者不可能是∠B的度数?()A、37B、57C、77D、97
5、直角三角形中两锐角平分线所交成的角的度数是()
6、(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()
2.如图所示,XOY=90°,点A、B分别在射线OX,OY上移动,BE是ABY的平分线,BE的反向延长线与OAB的平分线相交于点C,试问ACB的大小是否变化,如果保持不变,请给出证明,如果随点A、B的移动变化,请给出变化范围。
7、关于三角形的内角,下列判断不正确的是()
A、至少有两个锐角B、最多有一个直角
C、必有一个角大于60°D、至少有一个角不小于60°
8、如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()
3.一件商品如果按定价打九折出售可以盈利20%;如果打八
9如图,将等边三角形ABC剪去一个角后,则∠1+∠2的大
小为()
折出售可以盈利10元,问此商品的定价是多少?
4.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
10、若一个三角形的两个内角的平分线所成的钝角为145°,则这个三角形的形状为()
解答题
1.已知:如图15,AD⊥BC于D,EG⊥BC于G,∠E =∠3。求证:AD平分∠BAC。
第3篇:平行线的证明
平行线的证明:命题:判断一个事情的句子。
命题一般由条件和结论组成。通常可以写成如果…那么…的形式。如果引出的是条件那么引出的是结论。
正确的为真命题不正确的为假命题
要证明一个命题是假命题通常要举一个例子,使它具备问题得条件不具备问题得结论,我们称这样的例子为反例。
经过证明的真命题为定理
平行线的判定:两条直线被第三条直线所截,如果内错角相等,那么两条直线平行。
(内错角相等,两直线平行)
两条直线被第三条直线所截,如果同位角相等,那么
两条直线平行。
(同位角相等,两直线平行)
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行。
(同旁内角互补,两直线平行)
平行线的性质:两直线平行同位角相等
两直线平行内错角相等
两直线平行同旁内角互补
平行线及其判定练习题
一、选择题:
1.如图1所示,下列条件中,能判断AB∥CD的是()
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD
A
D
AE
DA
E
C
(1)(2)(3)2.如图2所示,如果∠D=∠EFC,那么()
A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF3.如图3所示,能判断AB∥CE的条件是()
A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE4.下列说法错误的是()
A.同位角不一定相等B.内错角都相等
C.同旁内角可能相等D.同旁内角互补,两直线平行
5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互()A.平行B.垂直C.平行或垂直D.平行或垂直或相交
二、填空题:
1.在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是______.2.在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.
CD3.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A可以判断______∥______,根据是(2)由∠CBE=∠C可以判断______∥______,根据是
三、训练平台:(每小题15分,共30分)
1.如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB.
A
2.如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=600,∠E=•30°,试说明AB∥CD.
E
AC
四、提高训练:
K
H
BD
如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?
de
abc
五、探索发现:
如图所示,请写出能够得到直线AB∥CD的所有直接条件.24AC
B
657D
六、中考题与竞赛题:
(2000.江苏)如图所示,直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为()
A.①②B.①③C.①④D.③④
c
41a
57b
