连铸述职报告
第1篇:连铸实习报告
认识实习报告
学 院: 信息科学与工程学院
专业班级:自动化1204班 学 号: 201204134134 实习时间:2014年1月3日 实习地点:中冶连铸技术工程股份有限公司
一、实习目的 1.通过亲身接触自动化设备和实验器材,并且通过老师及工厂人员的讲解,对自动化专业进行初步的认识,在实践中验证、巩固和深化已学的专业理论基础知识。2.加强对企业技术操作的理解,将学到的知识与实际相结合,运用已学的专业基础课程理论知识,对实习单位的各项技术操作进行初步分析观察和分析对比,找到其合理和不足之处,灵活运用所学的专业知识,在实践中发现并提出问题,找到解决问题的思路和方
法,提高分析问题和解决问题的能力。3.见识电子控制类产品的设计、开发及维护等过程,理解自动化专业的发展动态与专业前景。
4.通过一定的实践认知实习,为以后的毕业设计及论文撰写做好铺垫。 5.让我们了解到知识与现实之间的差距,提升自己实际的工作能力,领悟到现实工作中我们需要什么,我们应该朝哪一方面发展,对我们以后的发展指明了道路,为今后真正走上工作岗位打下良好基础。
二、实习地点及时间安排 1.实习地点:
中冶连铸技术工程股份有限公司 2.时间安排:
8:30 由武汉科技大学黄家湖校区出发 9:20 到达中冶连铸技术工程股份有限公司,开始参观 11:00 返回学校
三、实习单位介绍 中冶连铸技术工程股份有限公司(简称中冶连铸,cctec),是由中国冶金科工集团(mcc)发起设立的科技型股份制企业。2012年,中冶集团在美国《财富》杂志评选的世界企业500强中,排名第280位。中冶
连铸总部设在武汉,是国内最大的以连铸、板带冷轧与表面处理为特色的冶金专业化技术工程公司。2013年7月,中冶集团宣布,中冶南方合并中冶连铸,自此,中冶连铸成为中冶南方的全资子公司。
四、实习内容
已经在大学学习了3个学期了,我们自动化专业的学生还是对自动化这一专业在工业领域中的应用没有很感性的认识。学院特意安排我们1月3日上午到中冶连铸公司参观实习。进入生产车间前,公司相关人员首先跟我们都进行了一些安全教育同时介绍了一下公
司的大体情况。我们了解到该公司主要是生产符合客户特殊需求的电气柜,电气柜在安装时是断电的,所以我们可以安装后要经过调试,调试合格后电气柜才能出厂。因为车间没有太大的潜在危险公司规模不大,安装电气柜基本都是人工操作,将连有不同信号线的螺丝固定到对应的孔里,每条线上都有相应的标签,一一对应就可以了。在实习开始,由公司员工李华刚师傅带领全班同学对公司各个车间进行专业性的参观,在车间里李师傅对同学们参观中的疑问进行了专业、技术性的讲解。在参观过程中,李师傅针对我们专业对他们车间采用及开发的新技术、新设备进行了详细的介绍,这对我专业知识的认识更深了一层。
五、实习心得与体会
我觉得如果想要做一个出色的自动化人,首先就要用理论武装自己,这样在接触到实际的问题时,才能运用多学的知识去解决。本次实习使我第一次亲身感受了所学知识与实际的应用,理论与实际的相结合,让我们大开眼界,也算是对以前所学知识的一个初审吧!因为实践是检验真理的唯一标准。
总之,作为一名大二的学生,这次专业的认识实习,让我学到了很多课堂上更本学不到的东西,仿佛自己一下子成熟了,懂得了做人做事的道理,也懂得
了学习的意义。我看清了自己的人生方向,这也让我认识到了从事电子工作应支持仔细认真的工作态度,同时也培养了我的耐心和素质,我现在能够做到服从指挥,感受到了提出疑惑和疑惑解决后的快感。对自己的专业也更喜爱,不再迷茫。篇2:关于烧结-炼铁-炼铁-连铸工艺的实习报告2013 重庆科技学院
学生实习(实训)总结报告
学 院:冶金与材料工程学院 专业班级:_冶金工程2010-03 学生姓名:__ 李建康______学 号:___2010440446 实习(实训)地点:____四川德胜集团钢铁有限公司__ ___ 报告题目:___关于烧结-炼铁-炼铁-连铸工艺的实习报告 报告日期:
2013 年 5 月 9 日
指导教师评语: ____________
___________________________ ________________________________________________________________________________________________________________________________________________________________________________________________________ _____ 成绩(五级记分制):______ _______ 指导教师(签字): 关于烧结-炼铁-炼铁-连铸工艺的实习报告
一 前言 1.实习目的通过实习培养学生理论联系实际的科学态度,实事求是的思想作风,调查研究的工作方法,独立发现问题,分析问题和解决问题的能力;通过深入了解实习对象----冶金企业,与冶金技术实践的零距离接触,促进学生加深所学的冶金技术理论,工艺与操作知识的理解,提高学生解决实际问题的能力。2.具体要求 1)进企业前,学习和掌握本实习指导书的要求,制定个人实习计划。2)通过参加实习劳动,现场观测,查阅资料,走访请教,听技术课等方式,广泛收集有关技术基础资料(生产工艺流程,技术操作方法,主要技术经济指标,设备结构性能及运动状态,车间配置等)。3)实习期间应查阅,研究下列资料:生产月报,计划报表,操作规程,技术卡片,岗位操作法,通用标准,技术检验资料,技术总结,厂内外研究工作报告,合理化建议,初步设计说明书等。4)做好实习日记,记录通过各种方法所收集的相关资料和数据,如原材料成分与数量,产品成分和数量,主要技术经济指标,主体设备的结构及其主要尺寸等。5)按实习要求,随时整理有关数据,能绘制成图表的就应绘制图表,便于资料整理收集。6)实习期间,定期向指导老师汇报实习进展情况,以求得老师的及时指导。7)严格遵守学校和企业规章制度,虚心学习,搞好团结。3.实习任务安排
在实习之前,对实习学生进行实习动员。
实习地点:四川省德胜钢铁集团公司烧结厂,炼铁厂,炼钢厂
实习时间:20103.04.15--2013.05.10 二 实习内容 1.烧结 4月18日我们在梁老师和高老师的带领下去了德胜烧结厂实习,这边只有一台260?的烧结机,以下是对德胜烧结厂260?烧结机介绍。260?烧结工艺流程图
该烧结机有效面积260?,台车的宽度为3.5m,长度为1.5m,栏板高度为700mm。给料装置主要是由宽皮带给料机,九棍布料器组成;两台主抽风机采用英国豪顿华进口风机,每台风机风量13000?/h,点火装置为双顶热点火系统,选用了能够实现自动保温的国内先进工艺的双层偏斜式烧嘴。头尾密封采用全金属柔磁密封,滑到密封采用下滑道为双板簧密封、台车为固定滑板的密封方式。润滑系统采用中冶华润集团中智能润滑系统,滑道润滑采用国际先进的德国进口林肯双线自动润滑系统,密封滑道和各润滑点实现自动润滑。采用水冷式单辊破碎机进行热破碎,破碎控制在150mm以内,冷却装置采用280?鼓风环冷机,配4台鼓风机。散料收集采用环形皮带运输机,故障率低且环保。经环冷机冷却的烧结矿经板式给矿机卸料至皮带运输机。
配料工序: 1)配料室岗位当班人员,1人在值班室内监视、记录设备运行情况,一人在配料室监视设备运行,及下料情况。2)配料岗位对各使用的原燃料每两小时进行一次跑盘,要求含铁原料跑盘误差不大于4%,溶剂和燃料的误差不大于0.2kg:变料或跑盘误差超出规定范围,则按照控制室要求进行跑盘
3)保持生石灰粉消化装置的正常运行。消化效果:不能见明显的干颗粒、不能见消化装置料口流水。在启动配料设备之前手动开启消化装置,在停止配料后,继续保持消化装置运行15-30分钟。随时保持对冷返矿的加水润湿,润湿效果达到未见干颗粒为准。
烧结矿质量检验结果 2 炼铁
4月21号我们在梁老师和高老师的指导下对德胜3#高炉进行了实习。1250高炉工艺流程图 本座高炉设计年产铁量为118万吨,年平均利用系数为2.5t/m.d。高炉的有效容积为1348?。系统采用经凑式串罐无料钟炉顶,高炉是自立式框架结构,在总结国内外钒钛矿高炉长寿上,采用一些国内外行之有效高炉长寿措施而设计的矮胖型高炉。高炉内型是薄壁炉村,是型定操作炉型,维持高炉投产后整个炉役在操作炉型下生产。炉体冷却设备采用全冷却壁炉腹用四层冷却板过度,密闭软水循环一串到顶的冷却方式。高炉生产时通过传送带把铁矿石,焦炭和溶剂等固体原料按规定配料比传送到炉顶篇3:包钢生产实习报告-目 录
引言...................................................................................................................................................0 1 炼铁厂生产实习报告.................................................................................................................2 1.1 炼铁厂生产工艺.............................................................................................................2 1.2 主要产品、生产规模.......................................................................................................3 1.3 主要设备工作原理...........................................................................................................3 1.4 设备维修管理...................................................................................................................4 2炼钢厂生产实习报告....................................................................................................................5 2.1 炼钢厂生产工艺.............................................................................................................5 2.2 主要产品、生产规模.......................................................................................................5 2.3 主要设备工作原理...........................................................................................................7 5薄板连铸连轧厂生产实习报告....................................................................................................7 5.1薄板胚连铸连轧生产工艺................................................................................................8 5.2主要产品生产规模..........................................................................错误!未定义书签。5.3主要设备工作原理............................................................................................................9 5.4设备的维修和管理..........................................................................................................10 实习总结.........................................................................................................................................10 参考文献:.......................................................................................................................................12 引言
一、实习目的生产实习是我们本科教学计划中非常重要的实践性教学环节,是我们接触实际,了解社会的好机会,同时也会让我们增强劳动观点和事业心、责任感;学习生产技术和管理知识,巩固所学理论知识,获取本专业的实际知识,增强感性认识,培养初步的实际工作能力和专业技能。通过这次对包钢的认识实习,我们对钢铁生产的主要设计和工艺流程,运输联系、工厂布局,钢铁冶金企业的车间组成和总图布置,机械化运输及装卸设备等,有一较全面的感性认识。对本专业的知识有了更深刻的了解,并提高了实践动手能力,为下面课程的学习以及日后走向工作岗位打下一定的基础。
二、实习时间: 2013年3月25日——4月2日
三、实习地点:包头钢铁(集团)有限责任公司
四、实习的部门
(1)炼铁厂四号六号高炉
(2)炼钢厂
(3)薄板厂
五、实习要求 1)深入了解实际,主动地、虚心地向工程技术人员和工人师傅学习,结合生产情况,针对生产情况,针对工艺、设备的特点以及存在的问题作深入的了解,做到“手勤、眼勤、嘴勤”。
2)人人重视安全,防止发生人身和设备事故。3)严格遵守工厂的各项规章制度,严格遵守实习队的组织纪律。4)实习中要及时整理资料,最后要按时交实习报告,并接受考核。
七、包钢简介 包钢是我国重要的钢铁工业基地和全国最大的稀土生产、科研基地,是内蒙古自治区最大的工业企业。1954年开始建设,1959年投产.包钢拥有“包钢股份”和“包钢稀土”两个上市公司,2010年,包钢经济总量和主要技术经济指标达到历史最好水平,销售收入首次突破400亿元大关,达到432.64亿元,同比增加100亿元以上,增长31.7%;钢产量达到983.9万吨,同比增加100万吨,增长11.32%;上缴税金达到37.96亿元,同比增加10亿元以上,增长38.8%,为地方经济社会发展做出了应有的贡献。
包钢已经进入我国千万吨级钢铁企业行列。拥有具备国际国内先进水平的冷轧和热轧薄板及宽厚板、无缝钢管、重轨及大型材、线棒生产线,是我国主要钢轨生产基地之
一、品种规格最齐全的无缝钢管生产基地之
一、西北地区最大的薄板生产基地。 包钢稀土产业在国内外具有举足轻重的地位。稀土氧化物总量占全国市场份额的40%以上,钕铁硼、负极粉、抛光粉等功能材料产能占全国市场份额20%以上,稀土金属镨钕占全国市场份额的30%。拥有我国的权威稀土科研机构——包钢稀土研究院、“瑞科稀土冶金及功能材料国家工程中心”,曾为美国发现号航天飞机阿尔法磁谱仪、我国“神舟”飞船运载火箭和“嫦娥一号”运载火箭提供重要磁性材料。
包钢始终致力于科技进步和自主创新。csp和高速钢轨领域的两项技术成果获国家科技进步二等奖。是德国西马克公司亚洲第一家、世界第二家csp技术培训基地,是意大利pomini公司在中国唯一的磨床培训中心,薄板的生产、管理和无缝管生产技术等实现对国外输出。
机械工程学院 机械设计制造及其自动化系 1 包钢始终以高度的社会责任感节约资源、保护环境。在行业内首家实现高炉全干法除尘,率先建设全国示范生态工业园区,被列为全国首批循环经济试点单位之一,在我国2007年首次评比的“中国能源绿色企业50佳”中,包钢位列第一。
包钢秉承“坚韧不拔,超越自我”的企业精神,“十一五”末计划实现销售收入和资产总值双百亿美元。我们将坚持以结构调整为主线,实现由侧重规模向“精品+规模”提升并重的转变;坚持以节能减排为重点,实现由初见成效向全面系统改进转变。1 炼铁厂生产实习报告 1.1 炼铁厂生产工艺
机械工程学院 机械设计制造及其自动化系 2 1.2四号高炉介绍 我们来到炼铁厂的四号高炉,其实我早已经听说过四号高炉的历史了,因为包钢的四号高炉很有名气。包钢炼铁厂现共有六座高炉出铁。我们参观的是四号高炉。它的总容积为2200立方米,是1995年11月投产的。高炉的冶炼全部采用电脑程控自动化皮带上料,技术人员只在监控室内按一下电钮,检查一下电脑上的数据就可完成高炉冶炼的全过程。
四号高炉采用四座外燃式热风炉皮带上料,炉顶引进了卢森堡无钏布料器,炉前是环形出铁口,炉内采用美国霍尼韦尔公司计算机控制系统,通过触摸式控制台使高炉冶铁实现全部自动化操作。从铁矿石到铁水的整个生产流程是在高炉里完成的,高炉冶炼的基本过程就是铁氧化物的还原过程。
1.3 主要设备工作原理
机械工程学院 机械设计制造及其自动化系 3(1)高炉
我们主要观察学习了4号高炉,从外表看4号高炉为圆球形的炉体,进入内部我们看到了上料,出钢,除渣和除尘等装置,除尘装置是干法除尘(其中为布袋)。其工作原理:高炉生产是连续进行的。高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)巾的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。
(2)高炉热风炉
热风炉是高炉冶炼的一个重要过程,它主要有四个作用:1高温鼓风2调湿鼓风3氧气富化鼓风4辅助燃料的喷入,在实习的过程中我们师傅给我们主要介绍了热风炉的换炉和休风操作,我们可以看到有两组热风炉进行交替给高炉进行鼓风操作,因为在操作过程中对风温和风速都有一定的要求,在送风的操作过程当中采用的交叉并联送风,在一定的冶炼条件下,确定合适的鼓风参数和风口进风状态,达到初始煤气流的合理分布,使炉缸工作均匀活跃,炉况稳定顺行。通过选抒合适的风口面积、风量、风温、湿分、喷吹量、富氧量等参数,并根据炉况变化对这些参数进行调节,达到炉况稳定顺行和煤气利用改善的目的。1.4 设备维修管理
炼铁高炉设备进行维护检修,执行标准化作业可以有效的减少各类故障、事故的发生,提高检修效率,减少人力物力耗损,保持高炉高效稳定地运行.本铁高炉设备维护检修执行标准化作业之实践进行探索.机械工程学院 机械设计制造及其自动化系 4篇4:关于德胜钢铁厂的实习报告
关于德胜钢铁厂的实习报告
一、前言:
1、实习地点:四川乐山·德胜钢铁厂
2、实习时间:2012年4月9日——2012年4月27日
3、简介:四川乐山德胜钢铁厂位于一代文化巨匠郭沫若的故乡——四川省乐山市沙湾区。德胜集团创立于1997年,是一家集黑色金属冶炼及压延加工为主体,集矿产资源开发、水泥制造、煤化工、物流仓储、国际贸易及房地产开发等多元产业为一体快速发展的大型民营企业。,现已形成年产500万吨煤、500万吨钢、320万吨焦炭的综合生产能力以及氮气、氩气、冶金焦炭、焦油、粗苯等化工产品。
4、实习目的:
通过生产劳动,生产技术教育和实际研究生产问题,理论联系实际,深入了解炼烧结厂,铁厂,炼钢厂工艺流程,技术指标,生产设备及操作规程;观察学习技术人员及工人师傅分析问题的方法和经验。
二、实习内容: (转载于:连铸实习报告)
1、连铸
⑴ 连铸 工艺流程图
⑵连铸的原理:钢水不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的铸造工艺过程。
⑶ 连铸工艺指标:
大包温度控制:1560-1580℃;绝热板中包:第一炉:1585-1620℃;第二炉1580-1600℃;连铸炉:1560-1620℃;
干式板中包:第一炉:1600-1630℃;第二炉:1590-1600℃;连铸炉:1565-1590℃; 中间包温度控制:hrb335 hrb400:1515-1545℃;中间包液面控制:500-800mm;
拉速:1.6-2.8m/min;
配水:一冷水:125-145m3/h,二冷水:35-65m3/h ⑷实习收获:实习第一天,我们在王红丹老师的带领下到德胜的连铸车间参观实习,我们处在实习的第三小组,被安排到一号连铸机参观。但是,一号连铸机处于检修状态,当天没有能看到出钢坯的过程。德胜目前有两台六流的小方坯连铸机,连铸机的拉速为2.5m/min,小方坯规格:160mm×160mm×9000mm 第二天一号连铸机恢复工作,但只有5流工作,这样导致一包钢水的浇铸时间有所延长,经观察,连铸机正常工作的情况下,浇注一包钢水的时间为32min,5流工作的情况下浇注一包钢水的时间为38min。连铸机的结晶器长900mm,弧形半径为8m,矫直方法为一点矫直。两个钢包换取之间的时间是100s,钢包的出钢扣位于1/2半径处,出钢口直径140mm。
连铸车间的工人都是社会上的农民工,他们穿着厚厚的劳保服在1500多度的高温钢水前工作。后来了解到,连铸车间和其他车间的工作相比技术含量比较低,所以普通人结果一些培训就可上岗了。身为大学生的我们,虽然毕业了不会到连铸的生产第一线去工作,但还是要向他们认真学习的!
2、炼钢厂
实习的第四天我们在吕俊杰老师的带领下进入炼钢厂的转炉车间实习,这里有三个转炉,其中,1、2号炼钢,3号转炉提钒。
(1)工艺流程:
(3)原理:
炼钢就是铁水通过氧化反应脱碳、升温、合金化的过程。它的主要任务是脱碳、脱氧、升温、去除气体和非金属夹杂(如s、p)、合金化。
现代炼钢以转炉炼钢法为主,这种炼钢法使用的氧化剂是氧气。把氧气通入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量,可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,压缩氧气从这些炉顶吹向炉内,叫做氧气顶炉炼钢法。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后吹入氧气并转动转炉使它直立起来。这时液态生铁发生剧烈的反应,使铁、硅、锰、碳、磷、硫氧化生成炉渣和和相应的废气。过一段时间后钢已炼成,停止通氧,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧,这样钢就炼好了。
⑷实习收获:德胜目前有3座转炉,其中3号转炉进行提矾处理,一炉钢水提矾时间12-13min,1、2号转炉进行炼钢,炼钢周期为31min。铁水从炼铁厂经火车运过来是的温度为1270℃-1300℃,出钢温度为1650℃-1665℃,德胜炼钢厂每天的设计产量为5500t。每炼一包钢水的操作顺序大体为加废钢→加铁水
→吹氧→出钢。其中吹氧依据每包钢水中c的含量来决定吹氧的次数,一般吹氧次数为2到3次,每次吹氧1min左右。
炼钢车间对员工的专业素质要求很高,中控室全计算机信息化控制,这就要求我们在对专业知识精通的情况下,还要对计算机的操作知识比较熟悉才行,所以我们要努力学习成长为一名高素质的大学生,才能更好的在自己的工作岗位上为社会做出贡献。
3、炼铁厂
德胜有三个高炉,其中
1、2号高炉为老式的450m3小高炉,生产指标为1350t/d,3号高炉为2003年建造的1250m3高炉,设计产量为3150t/d.(1)工艺流程:
高炉炼铁是指把铁矿石和焦炭,一氧化碳,氢气等燃料及熔剂(从理论上说把活动性比铁的金属和矿石混合后高温也可炼出铁来)装入高炉中冶炼,去掉杂
质而得到金属铁(生铁)。
高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。
⑶实习收获:来炼铁厂的第一天我们在3号高炉进行参观。德胜目前有3座高炉,1、2号比较小,只有450m3,而三号高炉是一座具有国家先进水平的1250m3高炉,设计年产量220万吨生铁。在炼铁厂参观实习的3天里,给我感受最深的就是3座高炉中,3号高炉的信息化水平最高,中控室比其他两座高炉都要先进。
1、2号高炉只有一个出铁口,而3号高炉有两个出铁口,从现场观察来看,高炉射击容量越大,越有利于降低焦比,提高产量,增加生产效率。
4、烧结厂
实习的最后一天,我们在柳浩老师的带领下到烧结厂参观实习。德胜的烧结机为260㎡烧结机,目前处于国内先进地位。可惜的是,当天烧结厂处于检修状态,未能看到具体的生产过程。
⑴ 烧结厂工艺指标:
混合设备参数:一次混合打水75% 二次混合打水25% 德胜有2台60m2和1台260m2共3台烧结机,年产380万吨烧结矿; 260m2烧结机参数:
有效面积:260m2;有效烧结长度:69.75m;
栏板高度:0.7m;台车长度:1.5m;台车宽度:3.5m 设备能力:正常处理物料量每小时520t,最大处理量每小时610t,最大聊层厚度是700mm,开始烧结温度700-800℃,出口温度100-150℃.篇5:最新钢铁厂实习报告
关于德胜钢铁厂的实习(实训)报告
一、实习目的:
生产实习要求我们了解烧结,高炉炼铁,转炉炼钢,炉外精炼,连续铸钢 等主要工艺设备及工艺流程;收集认识实习所在工厂的安全生产要求和注意事项:分到班组后,对所在车间的主要生产设备的作用、原理、安全操作、维护、检修、安装、调整、经常出现的故障等进行实地考察研究。它是冶金工程专业十分重要的实践性教学环节,生产实习是与课堂教学完全不同的教学方法,在教学计划中,生产实习是课堂教学的补充。通过现场的讲授、参观、座谈、讨论、分析等多种形式,一方面来巩固在书本上学到的理论知识,另一方面,可获得在书本上不易了解和不易学到的生产现场的实际知识,是培养我们实际动手能力和分析问题解决问题能力、理论与实践相结合的基本训练。
二、实习时间:
2012年3月31日—2012年4月27日
三、实习地点:
四川省乐山市沙湾区德胜集团钢铁有限公司
四、实习公司简介:
四川德胜集团钢铁有限公司座落在现代文豪郭沫若诞生地,素有“钟灵”、“毓秀”、“胜似江南”之美誉的四川西南部乐山沙湾。公司厂区依天下秀美的峨眉山脉,傍气势磅礴的大渡河而建。西南地区交通大动脉——成昆铁路从厂区北面通过。距沙湾火车站500余米,公司铁路专用线与成昆线接轨。交通运输水陆兼备,极其便捷。公司是德胜集团的核心企业之一,现有员工3000人,各类专业技术人员逾千人。拥有资产30亿元,占地3500余亩,100万吨钢及配套的生产能力。拥有国内一流装备水平的炼钢80吨顶底复吹转炉的现代化新型炼钢厂,80万吨全连轧棒材生产线,公司高强度含钒抗震钢筋综合技改工程2010年竣工后,生产能力可达200万吨。
公司已被列入四川省首批三十户迅速做大做强类大企业集团之一。公司是iso9001:2000国际质量认证企业,中国民营企业500强之一,四川省银企合作诚信企业,“德威”商标被评为“四川省著名商标”,“德威”牌热轧带肋钢筋荣获“四川省名牌产品”,“国家免检产品”称号。产品畅销全国各地及韩国和
东南亚等地区。始终坚持以人为本,全面协调可持续发展战略,在做强、做大、做精、做优的方针指导下,加快产业发展进程,延伸产业链,充分开发资源,高效利用新工艺,打造全新的效益型企业,为实现“百亿工程”目标,为四川省“工业强省”做出新的贡献。
五、实习安排:
3月31日到4月8日:校内实习准备。4月9日:从学校坐车到四川德胜集团钢铁有限公司,路途一天。4月10日:上午到德胜公司进行了安全培训,下午正式到炼铁厂开始实习,由梁中渝老师和高艳宏老师带队。4月11日到4月15日:我们先后在炼铁厂的3﹟和2﹟高炉实习,在梁中渝老师和高艳宏老师带领下,我们观看了高炉现场,老师们给我们讲解了一些关于炼铁的知识和炼铁设备,回到中控室,我们又仔细看了控制炼铁生产的控制系统及其相关参数,不懂的地方老师们就给我们耐心讲解,我们都受益匪浅。其中在4月 12日,我们部分同学在柳浩老师的带领下参观了烧结厂,对烧结有了很好的了解。4月16日:我们在周书才老师的带领下,来到了连铸车间实习,了解了连铸工艺和设备及其部分技术操作规程。4月18日:我们在周书才老师的带领下,来到了转炉炼钢车间实习,熟悉了转炉炼钢的基本工艺。车间里有三个转炉,1﹟转炉用来提钒,2﹟和3﹟转炉用来炼半钢,炉外精炼主要采用吹氩工艺。
4月20日:乘车返校,路途一天。4月21日到4月27日:实习总结,参观校内实训平台参观和参加实习考试。
六、主要工艺流程图:
1.炼铁工艺流程图 2.转炉炼钢工艺图 3.连铸工艺图
七、各车间的主要工艺过程及主要设备简介: 1.烧结车间
烧结是将细粒的含铁物料与燃料、溶剂按一定比例混合,再加水润湿混和制粒成烧结料,铺于烧结机台车上,通过点火、抽风,借助燃料燃烧产生高温和一系列物理化学变化,生成部分低熔点物质,并软化熔融产生一定数量的液相,将铁矿物颗粒黏结起来,冷却后成为具有一定性能的烧结矿的过程。
该烧结机有效面积260m2,台车宽度3.5m,长1.5m,栏板高度700mm.给料装置主要由宽皮带给料机,九辊布料器组成;两台主抽风机采用英国豪顿华进口风机,台机风量13000m2/h.点火装置为双预热点火系统,选用双层偏斜式烧嘴,头尾密封采用全金属柔磁密封,滑道密封采用下滑道为双板簧密封,台车为固定滑板密封方式。润滑系统采用中冶华润集中智能润滑系统,滑道润滑采用国际先进德国进口宁肯双线自动润换系统,密封滑道和各润滑点实现自动润滑。采用水冷式单辊破碎机进行热破碎,破碎控制在150mm以内。冷却装置用280m2鼓风环冷机,配四台鼓风机,散料收集采用环形皮带运输机,故障率低且环保。经环冷机冷却的烧结矿经板式给矿机卸料至皮带运输机。2.高炉炼铁车间
高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高 度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉炼铁生产工艺过程由一个高炉本体和五个辅助设备系统完成。其辅助设备包括送风系统、煤气净化系统、渣铁处理系统、喷吹燃料系统和上料系统。
(四川德胜集团钢铁有限公司高炉部分信息表)1250m3高炉简介: 该高炉于2009年6月10日开工,在设计上以优质、高产、低耗、环保为宗旨,贯彻精料、高温、高风温、长寿等技术方针,采用成熟、可靠、适用、先进的工艺技术,是集原料准备,烧结生产,高炉炼铁于一体的发展生产规模,在设计上引进、移植和消化国内外数十项新技术,整体上提高了川钢高炉的装备水平。
高炉设计年产量118万吨,年平均利用系数2.5t/m3.d,有效容积1348m3.上料系统采用紧凑式串罐无料钟炉顶,冷却设备采用全冷却壁方案,炉腹采用4层冷却板过渡,密封软水循环一串到顶的冷却方式。双矩型除铁场轮流出铁,并设置两个轻便型摆动流槽。采用底滤法水渣新工艺。煤气净化系统采用重力除尘和干法布袋除尘设施净化煤气,清灰工艺采用气力输灰式。三座顶燃式热风炉交叉送风,采用双预热方式,利于满足高炉生产所需要1200℃高风温,高炉生产操作控制采取美国ab公司plc自动化系统,在中央控制室,上料操作室,进料操作室,喷煤操作室,风机操作室,水系统操作室,配电操作室分点和集中实施生产操作控制,提升了自动化控制技术,有保障生产稳定性。该高炉采用低品位,难冶炼的特殊钒钛矿资源,开启了公司大型高炉冶炼钒钛磁铁矿的先河。3.转炉炼钢车间
转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。
第2篇:连铸
A Adjusting cylinder manipulator 调节油缸机械手
Air brake 空气制动器 Air-conditioning units 空调
Air clutch for emergency 事故用的空气离合器
Air motor for emergency 事故用的空气马达
Air valve stand 空气阀站 Alarm lamp警示灯 Alignment stand校准台 Ancillary equipment 附属设备 Anchor frame 锚固框架 Anchor bolt 地脚螺栓
Amp box for ladle weighing device 大包称量装置放大器盒
Arm for position control 位置控制用臂 Auxiliary equipment 辅助设备 Auto joint support 自动接头装置 Auto-plug system 自动堵塞系统
B Ball bearing 球面轴套 Base frame 基础框架 Beam suspension 梁式吊具 Bearing for rotating 旋转用轴承 Bearing for gear 齿轮用轴承
Bearing saddle and parts 轴承座及其零件
Bearing wheel and axle轮用轴承轮轴 Bending point矫直点 Bending zone 弯曲区 Bevel gear box斜齿轮箱 Bow segment 弧形扇形段
Breakout detection system 漏钢预报系统 Brush descaling unit 铁刷去鳞装置 Brick shoe制动板 Burr chute 毛刺流槽 Burn-out station 燃烧站 Buffer for moving 移动用缓冲器 Buffer缓冲器
Buffer frame 缓冲器框架
C
Cam 撞齿
Car positionning unit 车定位装置 Casting platform 浇铸平台
Casting powder feeder 加保护渣装置 Casting subsystem 浇注分系统 Casting thickne adjusting device 浇铸厚度调节装置
Center beam 中心梁 Center rail 中心轨
Centering equipment 对中设备
Centering shaft for seggment 0 trunnion 扇形段0耳轴用对中轴 Chain conveyer拖链 Chain gear链齿轮 Chain guide rail链导向轨
Chain-type dummy bar 链式引锭杆 Changing jig for rotary bearing 回转轴承用更换夹具
Check facility 检测设备
Check track scarfing machine 火清机检查跟踪 Chock轴承座 Chute 溜槽
Clamping equipment 加紧设备 Clamping piece 紧固件 Cleaning stand 清扫台
Compreed water descaling unit 高压水除鳞装置
Connecting pin连接销
Continuous slab caster 板坯连铸机
Continuous casting machine 连铸机 Control panel 控制盘 Control pulpit 控制台,操纵台 Control station 控制台 Cooling equipment 冷却器 Cooling chamber 冷却室 Cooling stand 冷却台 Copper pipe铜管
Copper plate with screw washer 带螺纹衬的铜板 Covering hood 罩
Conveyor with claw带爪输送链 Coupling for emergency 事故用联轴器 Crane tongs 吊车 Crop push切头推出 Cro transfer car 横移车
Curtain hanger for mobile移动用帘式悬挂支撑架
Curtain cable carry门帘式电缆,运送架 Cushion arm缓冲臂 Cushion coupling缓冲联轴器 Cylinder bracket 油缸支撑架
Cylinder U type jig & pin 油缸U形夹和销
D Deburrer 去毛刺机 Deburring beam 去毛刺梁
Deck and bracket for rotating 回转用走台和支架
Deck and bracket for lifting 提升用走台和支架
Deck and bracket for ladle cover operating 大包盖操作用走台和支架 Delivery roll table出口辊道 Depiler去剁机
Depositing stand 存放台架
Detector(limit switch;cam limit switch)检测器(限位开关,凸轮限位开关)Disconnecting equipment 脱引锭设备 Dish spring for mold fixed结晶器固定用碟簧
Dismantling stand 拆卸台 Distribution vakve分配阀 Drive shaft传动轴
Drive side wheel and axle驱动侧轮轴 Drive unit 驱动装置
Driven roller 驱动辊
Drying stand 干燥台 Drying station 烘烤站 Drum卷筒
Dummy bar cusion device引锭杆缓冲装置
Dummy bar disconnecting device 脱引锭装置
Dummy bar drop unit引锭杆防落装置 Dummy bar head 引锭杆头 Dummy bar rocker 引锭杆升降台
Dummy bar support roll引锭杆支撑辊 Dummy bar support “top feeding” “上装”引锭杆台架
E
Eddy-current inspection 涡流检验
Emergence casting equipment 事故浇铸设备
Emergency cutting equipment 事故切割设备
Emergency slide gate 紧急滑动水口
Electric-magnetic stirrer 电磁搅拌器 Erection aids 安装辅助工具
Eside chain guide rail前部链导向轨 Exchange stand 更换台
Exectric hose and aembly电气软管及组件
Exhaust equipment 抽气设备 Expert spanner for anchor bolt 地脚螺栓用专用扳手
Expert spanner for rotary bearing 回转轴承用专用扳手
Eye check table目视检查辊道
F
Fan 风机
Filter and lubricator support过滤器和润滑器支架
Filter equipment 过滤器
Filter valve and distributing valve 过滤器和分配阀
Finishing plant 精整
Fixer stop 固定挡板
Flexible hose金属软管 Fluid connection 流体接头 Foot rollers 足辊、底辊 Foundation frame 底座
Frame arm shaft and other parts 框架,臂,轴和其它部件
G
Gear coupling齿轮联轴器 Gear reducer machine齿轮减速机 Gom packing 橡胶垫
Grease feeder pump 油脂给油泵 Grinder 手磨机,砂磨机 Guide bush导向轴套 Guide pin导向销
Guide rail pieces导向辊组件 Gunning stand 喷补台
H Hand cleaning equipment 手动清扫装置 Hand grinding unit 手动打磨机 Handling equipment 处理设备
Heat conservation equipment 保温设备 Heat conservation box 保温箱 Heat conservation pit 保温坑 Heat cover防热罩、其它 Head end 引锭杆头末端
Heat recovery system 热回收系统 Heavy rail and aembly重型轨及组件 Hook receive device吊钩接收装置 Horizontal segment 水平扇形段 Hose and attachment软管及附件 Hose for cable belt conveyor电缆拖链内用软管
Hot metal gunning machine 铁水喷枪 Hydraulic clamping device 液压夹持装置
Hydraulic cylinder with sensor and wring带传感器和配线的液压缸
Hydraulic hose, connector, cut-off valve液压软管,连接器,截止阀
Hydraulic motor for mold centering结晶器对中用液压马达
Hydraulic pipe for tundish car sliding nozzle中间包车滑动水口液压配管
I Inspection equipment 检验设备 Intermediate roller table 中间辊道
Immersion cooling basin 浸入式冷却池
J Jack for pin and lifting oil cylinder 销和提升油缸用拔出器
K Kishing base基准面
L
Lable dowelling machine 钉标签机 Ladle car 钢包小车 Ladle cover 钢包盖
Ladle cover manipulator 钢包盖机械手 Ladle equipment 钢包
Ladle plateform on tundish car 中间包车上大包操作平台
Ladle sand dumping device 钢包注沙系统
Ladle shroud 长水口
Ladle slide gate manipulator 钢包滑动水口机械手
Ladle stirring stand 钢包搅拌站 Ladle transfer device 钢包运输装置 Ladle treatment equipment 钢包处理设备
Ladle turret-butterfly 钢包回转台(蝶型)
Ladle turret-forged column 钢包回转台柱(锻造型)
Ladle turret-welded column 钢包回转台柱(焊接型)
Ladle lancing device 钢包喷枪 Length measuring equipment 定尺测量装置
Level controller液面控制器 Lever-type oscillator 杆式振动装置 Lever-type pusher 杆式推钢机 Lateral strand guide 侧辊铸流导向装置 Lifting chain提升链 Lifting device提升装置 Lifting frame升降框架 Lifting plate 提升板
Lifting power cylinder提升电动缸 Lifting roller table 提升辊道 Lifting table 提升台
Lighting annunciator照明,报警器 Light rail and aembly轻型轨及组件 Line spring线弹簧
Liner for slide frame滑动框架用衬垫 Limit switch 限位开关 Load cell压头
Local control panel机旁控制盘 Long nozzle operating device长水口操作装置
Lubricant pipe for ladle cover operate 大包盖操作用润滑配管
Lubrication main pump 润滑主泵
M Magnetic powder inspection 磁粉检验 Maintenance sprocket 维修链轮 Maintenance stand 检修台架 Manipulator 机械手
Manual pump device手动泵装置 Manual valve 手动阀 Marking machine 喷印机 Marking roll table喷印机辊道 Measuring equipment 测量设备 Measuring ruler 测量尺
Middle shaft中间轴 Mini-flowmeter 微型流量计
Mould centering stand结晶器对中台 Mould change parts结晶器更换部件 Mould fixed device结晶器固定装置 Mould level control system 结晶液面控制系统
Mould moving cover结晶器活动盖板 Mould oscillation measuring device 结晶器振动测量装置
Mould testing stand 结晶器检试台 Motor brake sensor马达,制动器,传感器 Moveable stop 活动挡板
N Narrow copper plate窄面铜板 Narrow foot roll窄面足辊装配 Narrow support plate窄面支撑板 NKK-sensor arm NKK-传感器臂 Nozzle arrangement 喷嘴布置
Nozzle spraying stand 喷淋试验台
O Offline table下线辊道 Oil seal油封
Oille bush for detector 检测件用无油轴套
Oille plate 无油板
One set grease nozzle 整套油脂喷嘴
Online table上线辊道
Operating device for ladle cover 大包盖操作装置
Operating panel on car车上操作面板 Operating platform 操作平台 Operating tools 操作工具
O-ring 0形圈
Oscillating equipment 振动装置
Oscillating knife(BWG)振动剪
Oscillation device centering pin振动装置对中销
Over load control system超负载控制系统
Overpa 上过道
P
Parallel guide rod平行导向杆
Parting-off grinder 分割打磨机 Path tracking system 方向跟踪系统
Pendant panel 悬挂式控制箱 Penetration test 渗透试验 Piler堆垛机
Piler roll table堆垛机辊道 Pilling grate 堆坯格栅台架 Pilling table 堆垛台
Pinion 小齿轮 Pipe clamp 管夹
Pipe for swivel joint 旋转接头用配管 Pipe for air and argon 空气和氩气用配管 Piston ring 活塞环
Planet bearing reducer 行星齿轮减速机 Plant supoorting structure 设备支撑架 Push-off equipment 推钢机 Preheating station 预热站
Positioning roller table 定位辊道
Powder and other material 耐材和其它材料
Power cylinder电动缸 Power penel 动力盘
Protection wall and protection cover 保护墙和保护盖 Pull box 分配盒
Pulley shaft washer 滑轮,轴,垫片 PX detector PX检测器 Q Quick joint 快速接头
R Ram-type pusher 推钢机 Reducer base减速机底座 Relining stand 修砌台 Removal car 活动小车
Residual steel pouring stand 残钢浇铸台 R gauge for width宽面用样板 R gauge for narrow窄面用样板 R-gauge(top frame,bottom frame)样板(上框架,下框架)Ring bush环形轴套 Roll chain辊链
Roller gap checker 辊缝测定仪
Roller table(equipment)辊道
Roller table car 辊床车
Rope suspension 绳质吊具
Runout roller table 输出辊道
Runover equipment 输出设备
Runway driving device走行驱动装置
S Sample cutting machine 取样切割机 Sampling(equipment)取样(设备)Sandblasting descaling unit 喷砂去鳞装置
Saw equipment 锯 Scale flume氧化铁皮沟槽 Scale pit 氧化铁皮坑 Scale remover 除鳞机 Scale system 除鳞系统 Scarfer火焰清理机
Scarfing equipment 火焰处理设备 Scarfing robot 火焰清理机械手 Scarfing roller table 火焰清理辊道 Scrap equipment 废钢收集装置
screw jack 螺旋千斤顶
Seal packing密封垫,密封件 Seal washer 密封垫圈
Secondary steelmaking equipment 精炼设备
Sectionalizing machine 横向分割机
Segment change device扇形段更换装置 Segment manipulator 扇形段机械手
Segment manipulator-chain 扇形段机械手-链
Segment manipulator-crane 扇形段机械手-吊车
Segment o 扇形段O
Selective scarfing machine 可调式火焰清理机
S.E.N.changing device 长水口更换装置 Separation equipment 剪切设备 Shaft for wheel轮子用轴
Shroud changing device 水口更换装置
Shroud manipulator 长水口机械手
Skull removing stand 去馏台 Slab turnover device 板坯倾翻装置 Slide gate 滑动水口
Slide gate manipulator 滑动水口机械手 Slide nozzle cylinder lifting jig 滑动水口液压缸提升夹具 Slipping 滑环
Slitting machine 纵向分割机 Slitting roller table纵向分割辊道
Snorkel 长水口
Spray headers 喷头 Spray nozzle喷嘴 Spray pipe喷淋配管
Spectrometer 光谱仪 Springing stop弹簧停止器 Sprocket链轮
Standard tool 标准工具
Steam exhaust system 蒸汽抽取系统 Steel girde钢梁
Stirrer(EMS)电磁搅拌器 Stopper for moving移动用停止器 Stopper rod 塞棒
Stop valve 截止阀
Straight chain guide rail水平链导向轨 Straightening zone segment 矫直区扇形段
Strainers 过滤器
Strand guide 铸流导向装置 Strand guide roller 铸流导向辊
Subito measuring device 测量装置
Supply room 供料室 Supporting grate 支撑格栅 Supporting structure 支撑结构
Support pin 支撑销 Suspensions 吊具
Swiveling knife(VAI)旋转剪 Swivel joint 旋转接头
T Tail chain guide rail and shaft后部链导向轨和轴
Taper bush 锥形衬套
Taper measuring device 锥度测量装置 Technological steel structure 工业钢结构Terminal box for turret inside 回转体内侧用端子盒
Terminal box for turret outside 回转体外侧用端子盒
Termina box in car车内端子箱 Thermocouple with fixed parts带固定件的热电偶
Tilting knife(L-Tec)倾翻剪 Tilting power cylinder倾动电动缸 Torch cutting roller table 火焰切割辊道
Transfer car过跨台车 Transfer roller table 输送辊道
Transfer system 运输装置 Transom横梁
Trough and container 料槽和容器 Trunnion base for seggment 0扇形段0用耳轴座
Tundish(equipment)中间包 Tundish car 中间包小车
Tundish cover 中间包盖
Tundish cover stand中间包盖台架
Tundish stopper 中间包塞棒 Tundish swiveling device 中间包摆动装置
Tundish temperature measuring device 中间包温度测量装置 Tundish trough 中间包槽
Tundish turret 中间包回转台
Tundish exhaust system 中间包抽吸装置
Turning-type roller table 转动式辊道
Turnover equipment 翻钢机 Turnover frame 倾翻架 Turn pan转盘
U
Upper and lower limit detector上下限位检测器
US-inspection 超声波检验 Utility connection 公辅接头 Utility piping 公辅管道
V
Valve device for lifting hydrauliccylinder 提升液压缸用阀装置
Valve stand for cover operating device 盖操作装置用阀站
Ventilation station通风系统 Vertical segment 垂直扇形段
Visc roll 盘辊
W
Waiting table等待辊道
Walking beam equipment 称重步进梁
Water hose水软管
Weighing roller table 称重辊道
Weight frame称量台架 Wheel(drive side)轮(驱动侧)Wheel(no drive)轮(被动侧)Width copper plate宽面铜板
Width cooling water tank宽面冷却水箱 Width cramp unit宽面夹紧装置 Width foot roll aembly宽面足辊装配 Width measuring device 宽度测量装置
Withdrawal equipment 拉坯机
Wiring bush and bracket 配线,套管
和支架
Wiring for turret 回转体内用配线
Worm jack蜗轮千斤顶
Worm jack for mold centering结晶器对中用蜗轮千斤顶
第3篇:连铸机
连铸过程自动化技术综述
发布时间: 2010-10-08
浏览次数:154
文字颜色:
字号:TTT
视力保护:
郭戈1,王伟2,柴天佑3
(1甘肃工业大学电气工程与信息工程学院,甘肃兰州730050;2夫连理工大学;3东北大学)
[摘要]对国际国内的现有连铸过程自动化技术进行了全面的论述.主要分析和对比了最新的连铸过程自动化系统和相关的先进技术,指出r国内现有连铸过程存在的主要技术难题和需要开发的一些新技术.并就提高连铸坯质量的技术策略进行了探讨,最后指出我国开发优质纯净钢连铸技术的必要性。[关键词]连铸;自动化系统;控制策略 [中图分类号]TF777:TP29 [文献标识码]A [文章编号]l000-7059(2002)02-00l-05
On automation technologies in continuous casting proce
GUO GE, WANG WEI, CHAI TIAN-YOU
Abstract: Latest automation systems of continuous casting proce both at home and abroad are described.Current continuous casting automation systems and related technologies needed in continuous casting procees are compared in detail.The unsolved problems and new technologies needed in continuous casting proce are also listed.Moreover, the approaches are suggested for improving slab quality.And in the end, the authors point out the neceity of developing technologies for high quality pure steel production in China.Key words: continuous cating;automationsystems;control strategy
23 O 引言
连续铸造是将液体金属经过一组特殊的冷却和支撑装置连续地浇铸成一定断面形状的铸坯的过程。与传统的模铸相比,连铸不但简化了生产工艺流程,提高了生产率和产品质量,而且金属收得率较高,能耗和生产成本也大大低于模铸。连铸机按照机型分为立式、立弯式、垂直多点弯曲式、弧型以及水平型等,其中弧型连铸机占60%以上:按照铸坯形状又可分为板坯连铸机、大方坯连铸机、,j、方坯连铸机和圆坯连铸机等,其中小方坯连铸机约占50%左右[1-2]。随着计算机技术和自动化技术的迅速发展和在连铸生产中的广泛应用,以及诸如铸坯轻压下技术、电磁搅拌技术等连铸技术的不断涌现,连铸开始向近终型连铸、多炉连浇、热送、热轧以及炼钢连铸-连轧短流程联合生产的方向发展。但是,连铸过程中也存在许多难题,这是由连铸过程本身的复杂性决定的。其复杂性主要体现在以下几个方面[3-7]:
(1)存在着可测或不可测的扰动和未建模动态问题;(2)具有时变性和非线性特性;
(3)过程本身和执行机构常有较大的滞后;
(4)用于过程测量的传感器也常常受到高频测量噪声的影响;(5)连铸过程各环节之间相互耦合;
(6)连铸与炼钢和连轧之间需要协调控制和调度。由于上述复杂性,目前对于连铸过程建模和控制方面的研究成果虽然较多,但还不能很好地应用到实际生产之中,而常用的PID控制方法也不能实现令人满意的控制。因此,国内外一些控制学者和专家正在探讨将自适应控制、预测控制、H。控制、模糊专家系统和神经元网络等智能控制方法用于连铸生产过程各环节控制的可能性,旨在很好地解决各环节间的耦合控制及整个过程的优化和故障诊断等问题[8-11]。同时,在连铸计划的编制、最优浇次的分配以及炼钢连铸-连轧一体化生产的管理和调度策略等方面进行了许多富有成效的研究工作。由于连铸在钢铁工业生产中有着十分重要的作用,因此连铸过程控制已成为目前国内外自动控制领域的研究热点之一。本文主要论述国内外连铸过程自动化技术的研究现状,指出其中存在的问题及其发展方向。
l 连铸技术的研究现状
近10余年来,连铸技术取得了显著的进步,其中包括中间包钢水加热技术、结晶器钢水流控制技术、铸坯轻压下技术和高温铸坯制造技术等。连铸过程中钢水温度对铸坯质量很重要,为了将钢水温度降低幅度控制在较小的范围之内,有必要对中间包实行加热。中间包加热有感应加热和等离子加热两种方式[12]。新日铁公司的八幡厂和室兰厂采用感应加热方式,名古屋厂和我国的抚钢等厂家则采用等离子加热方式。中间包加热技术可以大幅度减少由于非正常浇注时的温度变化所造成的浸入式水口堵塞和铸坯质量降低等不利影响。
最先发展起来的结晶器内钢水流控制技术是钢水电磁搅拌技术
[13],它使得铸坯表层下的夹杂物和气泡明显减少,初期铸坯凝固壳厚度均匀,铸坯表层的偏析也减少,从而使纵裂等铸坯裂纹大大减少。甚至原来无法采用连铸的一些半镇静钢也可以采用连铸了。但是,当进行高速浇铸时,单位时间内流入结晶器的钢水量很大,即使稍微出现紊流都会导致生成的铸坯凝固壳不稳定,而且夹杂物难于上浮,容易使保护渣卷入钢水。为了确保高速浇铸时的铸坯质量和操作稳定,人们就采用静止磁场、局部磁场等措施对由浸入式水口流人结晶器的钢水流进行控制,使结晶器内的钢水流动始终处在最佳状态。
为了克服铸坯中心偏析和缩孔等缺陷,铸坯轻压下技术从80年代就开始用于连铸之中
[14]
。在此之前,无论方坯连铸还是板坯连铸中都一直采用低温浇铸和电磁搅拌技术,虽然对于改善宏观偏析起到了很好的作用,但无法改善半宏观偏析和微孔隙。在采用铸坯轻压下技术后,通过抑制凝固收缩引起的钢水流动,基本补偿或抵消了铸坯凝固收缩量,从而改善了板坯半宏观偏析、微孔率甚至微观偏析,与板坯相比,方坯的最终未凝固区变小。这种技术已在新日铁公司的八幡广、室兰厂和君津厂得到实际应用。
随着连铸技术的不断进步,热连轧HCR.热送直接轧制HDR以及连铸直接热轧CC—HDR等短流程生产已经具备了基本的技术基础
[15],并已逐渐成为钢铁工业中的一个主要生产流程。这种技术不但简化了工艺,缩短了生产周期,而且由
于不经过加热炉,所以减少了鳞落量,提高了金属收得率。近来,有些钢厂为了进一步节能和提高金属收得率,正在推行小方坯连铸的捧、线材铸态化生产,即省略开坯轧制。这一技术1991年在新日
铁公司室兰厂的连铸机上开始投入实际应用,一些质量指标基本达到了要求。目前,许多先进工业国家的连铸比已经达到80%以上,少数国家已实现了全连铸。
近年来,国内外加强了重要参量的检测技术研究,整个控制系统中普遍采用DCS和PLC,电气传动控制则采用交流调速和矢量控制技术,并采用多级自动化系统实现连铸生产自动化,出现了代表世界上自动化技术最高水平的一些连铸机 自动化系统[16]。新日铁公司君津4号双流板坯连铸机通过二级计算机系统自动控制结晶器冷却水量和结晶器振动参数,配备了一些必要的控制仪表和检测元件,如钢包钢水流量控制仪表、结晶器保护渣喂送仪表、结晶器液位涡流传感器和热电偶等。连铸机的中心控制室与切割控制窜互相结合,由遥控割炬完成铸坯切割,通过电视监视器进行生产监督。在保证最佳收得率的情况下,由过程计算机给出最佳切割长度,在线切除坯头并用遥控车运走,定尺铸坯则在计算机控制系统控制下由出坯辊道运走。采用该系统后,连铸车间的工作人员数量大大减少。
另外,许多厂家采用更为先进的一级自动化系统。如德国东方钢铁公司的连铸机采用一个典型的三级自动化控制和信息处理系统,其中第1级和第2级分别由Jeument—Schneidwer可编程控制器和西门子Teleperm—MMSR基础自动化系统构成。第3级为一个单独的计算机系统。还有l台故障诊断计算机与所有生产设备相连,负责连铸生产过程的故障诊断。该控制系统主要包括生产计划编制、转炉炼钢控制、板坯连铸控制、大方坯连铸控制、铸坯清理控制等。此外还有一个用于离线分析和软件开发的备用控制系统,采用放射性液位仪完成结晶器液位的检测和控制。另外,美国国钢公司2号连铸机控制系统也采用了三级计算机控制系统。其中第1级为PLC构成的集散控制系统;第2级为VAX-11/785型数字计算机构成的设备监控系统,它对第1级控制系统进行信息跟踪、存储和为其提供给定值,并同第3级交换信息;第3级为一个负责炼钢和连铸生产调度的计算机系统。该系统可以根据质量控制系统提供的数据做出关于质量状况、生产数据、收得率等的详细报表,并为操作员提供操作指导。在优化生产工艺方面.该控制系统能够在线计算转炉区的装料和合金添加料以及连铸区的最优拉速和最优冷却水量,并可显示各设备的运行状况。此外,中间包配备有称重仪表,结晶器配有一台数控坐标位置测量仪和放射性液位仪,它们分别用于控制中间包重量、校准结晶器位置和控制结晶器液位,并用一台微机来收集自动开浇所需的有关数据。实践证明,采用这种自动开浇技术,即使在浇铸小方坯时也能保证良好的浇铸效果。另外,美国国钢公司大湖分公司新建的2号一机双流连铸机的二级自动化系统还可以完成:拉速优化计算;根据第3级自动化系统提供的订货信息计算最佳切割长度;为一级系统提供水雾冷却参数和切割长度设定值;显示和记录与结晶器液位、拉坯速度以及铸坯温度等相关的操作条件。还有一些连铸车间采用了能够对工艺流程进行优化的控制系统。如德国阿尔贝德·萨尔公司伏克林根厂的四台连铸机采用相同的分级控制系统,实现生产记录、过程控制、物料跟踪等功能,控制从转炉装料到铸坯切割的整个生产过程中的各项工序。
最近,国外有些厂家的连铸机已经采用了四级自动化系统。美国内陆钢公司2号和3号连铸机都配备了四级自动化信息系统。其中第1级为显示控制系统,由DCS、PLC和CRT组成;第2级由过程计算机和CRT组成,用于设备监控;第3级为用于侨调和监视连铸车间各生产设备操作的计算机系统;第4级为中心数据处理计算机系统,用来管理和调度连铸及其相关工序,使各工序协调生产.并保存连铸车间的历史数据。该厂的二次冷却控制系统采用动态冷却控制模型进行控制.铸坯引锭杆上安装有辊缝检测装置和用于辊缝监视的脉冲发生器,以便校准夹辊辊缝和进行夹辊维修。
2 连铸过程中存在的技术问题
虽然有关连铸过程建模与控制的研究近年来取得了可喜的进步,但是其理论研究和实际应用水平仍然不能满足对连铸生产自动化程度和产品质量越来越高的要求,尤其在国内还有许多技术问题急待解决。
(1)大包到中间包以及中间包到结晶器的夹渣物检测至今仍然没有一种很好的办法滓混入钢液,从而使得铸坯出现夹渣,严重影响了产品质量,造成很大的经济损失。
(2)中间包钢水连续测温一直采用热电偶,而且只能是断续测量。每个热电偶寿命少则数小时,多则十几小时,光是热电偶一项每年就得消耗大笔资金。如果能研究一种温度传感器很好地解决中间包钢水连续测温问题[22]
[17-21],致使渣,其意义将是很大的。
[23](3)中间包钢水液位检测与控制技术控制方法效果不太理想。
直接关系到结晶器液位控制的效果,国内目前还仍然采用传统的PI(D)控制,由于其中的液压执行机构具有非线性特性以及水口堵塞和磨损等缘故,使得现有(4)现有的结晶器钢水液位检测与控制技术仍然不完善程,在这种控制下结晶器液面波动幅
度很大。另外,小方坯连铸机结晶器钢水液位是通过调整拉坯速度实现的,而拉速的改变又影响到一次和二次冷却水量的控制。所以,在解决结晶器液位控制的同时,如果能将冷却控制问题也综合起来,实现结晶器液位、一次及二次冷却水量的综合控制,将是很有意义的。
(5)二次冷却控制是目前研究较少的一个重要问题,国内许多厂家仍然采用传统的手工调节或仪表调节,而没有以有效的铸坯表面温度闭环控制为基础的冷却水量控制方法水动态控制方法,虽然因为采用温度计
算值而避免了铸坯表面温度测量误差的影响,但铸坯温度计算值与实际值之间毕竟有很大差异。可见先进控制方法在二冷水系统的应用研究还很不深人,还没有采用参数辨识的方法建立系统模型或用自适应控制、神经元网络和遗传算法等智
能方法进行二次冷却系统的建模与控制的研究。
(6)连铸保护渣的自动喂送和控制,以及自动开浇尤其是板坯连铸机的自动开浇控制问题至今没有很好地解决,大大影响了铸坯质量和连铸过程的自动化水平。
(7)连铸过程各环节的监测及综合优化控制问题还没有得到研究人员的重视,使得各控制回路的控制性能与整个系统的性能无法同时达到最优。
(8)炼钢-连铸-连轧短流程生产工艺作为钢铁工业的发展方向,对于其一体化协调控制、调度和管理的研究才刚刚开始,应当加大研究的力度。
(9)连铸过程中诸如漏钢预报等故障诊断和设备维护技术急待改进,否则将无法满足连铸过程越来越高的生产要求和质量要求。
(10)为了炼钢操作标准化,生产出纯净钢,迫切需要快速、连续、可靠测定夹杂物总量和特性的测定技术。目前,已有在线检测定氢、定铝、定钙和定氮探头。在线检测夹杂物技术也已开发成功,但达到实用化尚有一段距离。因此,炼钢工作者目前还主要依靠离线间接测定夹杂物的方法。
(11)目前国际上没有统一的钢纯净度标准
[28]
[27]
[24-26],无法很好地克服拉速和测量误差等引起的有色噪声扰动,使得系统鲁棒性较差。尤其像薄板坯连铸等对结晶器钢水液位要求很严格的过
。目前常用的所谓冷却
。尽管总氧量是评价钢质量的重要指标,但并非全部内容,因为允许的总氧量取决于工艺条件、取样位置,特别是取决于预定的产品用途及客户验收标准,所以用总氧量评价钢的质量只在钢相对纯净的条件下才有意义。为了确定冶炼工艺条件对去除夹杂物的影响,有必要建立一种在工艺操作过程中某一特定点评价钢水纯净度的方法。
(12)连铸坯热送热装是炼钢与轧钢的衔接点,是炼钢、轧钢节能的重要措旋,还有更深层次的优化炼钢、轧钢生产结构的重要意义。目前连铸坯热送热装技术仍存在着大量技术问题,如连铸坯能有效地进行热送热装必须以无缺陷坯为基础,它对连铸生产工艺与设备的优化提出了更高要求,尤其
是不同钢种连铸无缺陷坯生产的难度增大,这就要求我们加大连铸工艺软件与先进设备的开发力度。因热送热装工艺改变了连铸坯由热到冷,再由冷到热的加工生产流程,给钢材组织结构、加工性能等质量控制带来了不少新问题,这些都需研究开发。
(13)为了更有效地将超细小夹杂物减少到更低水平和发展高效连铸,除现有的夹杂物去除方法(如中间包吹氩气泡法、有色冶金去气法,即通过高速旋转吹氩气和中间包电磁搅拌脱去氧气的方法)之外,还需要开发更先进、更成熟的技术。
(14)连铸中间包不仅是稳压、分配钢水和保证钢水连续浇铸的缓冲容器,而且还是防止钢渣进入结晶器、去除钢液中非金属夹杂物、均匀钢水温度等保证铸坯质量的关键设备。连铸中间包内的控流元件(挡渣墙和挡渣堰等)的设置参数对中间包内非金属夹杂物的上浮及均匀钢水温度起着至关重要的作用。对于多流连铸中间包来说,各流出口温度及所含夹杂物的大小和数量会有很大的差异,从而给铸坯质量控制带来很大的困难。因此,寻找合理的中间包控流元件的设置参数,对多流连铸中间包来说具有特别重要的意义。
(15)提高钢渣和其它固体废料的利用率,也是连铸生产对环境更加友好的关键环节之一。我国大多数企业钢渣没有得到有效利用,随着原料的涨价和对环保要求的提高,钢渣有效利用显得越来越重要,所以有必要开发钢渣综合利用技术。
3 提高连铸坯质量的技术措施
连铸坯质量主要表现为铸坯的纯净度、铸坯表面质量和铸坯内部质量。其中连铸坯的纯净度主要受钢水纯净度和连铸机机型及操作工艺参数的影响。为了获得纯净度高的连铸坯,目前可采用的技术措施包括:防止钢包渣进人中间包(采用大包下渣自动检测技术);采用优质引流砂(自开率要大于98%);采用长水口和浸入式水口保护浇铸;防止吸入空气;防止中间包覆盖剂和耐火材料污染钢水;采用带垂直段的弧形连铸机,降低拉速以利夹杂物上浮;采用合适水口结构,防止结晶器内钢水卷渣等。
连铸的表面缺陷主要为纵裂纹、横裂纹、角横裂等。为了获得表面无缺陷连铸坯,目前可采用合适的连铸保护渣,合适的连铸拉速,合适的水口结构,合适的结晶器振动参数,合适的一次冷却和二次冷却制度等。连铸坯的内部缺陷主要为内裂、中心偏析和中心疏松。为了防止连铸坯产生内部缺陷,目前可采用合适的钢水过热度,合适的连铸拉速,合适的二次冷却技术;采用轻压下技术,连续弯曲和连续矫直技术等;严格控制板坯连铸机的开口度,准确对弧。
4 结束语
就目前国内外的现状而言,连铸过程的研究集中在实现优质高效薄板连铸的结晶器液位控连铸过程自动化技术综述制、铸坯二次冷却配水控制、漏钢预报、自动开浇控制以及夹渣检测与去除策略等方面。随着汽车业、造船业等的发展,我国对优质纯净钢特别是轿车用超深冲板的需求量越来越大,迫切要求尽快
发展优质纯净钢高效连铸技术。但是优质纯净钢薄板坯连铸过程中还有一些关键技术难题尚未解决,这使我国生产的钢材质量和品位明显偏低,在优质纯净钢生产方面更是困难重重。为此,开发具有我国自主知识产权的优质纯净钢高效连铸技术是十分重要和紧迫的。
参考文献
[1]姜永林,连铸生产概论[M]沈阳东北工学院出版社,1992.45-107 [2]郑沛然,连续铸钢工艺及设备IM]北京:冶金工业出版社,1991.206—227
[3]S F Grebe, G C Goodwin, M R Wested, ctal.An application of advanced control to steel casting[J].IEEE Control Society, 1994, 15(4):64-71
[4]Y He, Y Sahai.Fluid dynamic of continuous casting tundish-mathematical modeling [A].Steelmaking Conference Proceedings[C].[s.].The Iron and Steel Society, 1986.745-754.[5]J Szekely.F L Kaddah.The mathematical modeling of three-dimensional heat flow, fluid flow and turbulence phenomena in tundish[A].Steelmaking Conference Proceedings[C].[s.].}:The Iron and Steel Society,1986.761-776.[6]F j Kong, R D Keyser.Identification and control of the mould level in a continuous casting machine [A].J Theocharis.Proceedings 2 IEEE Conference on Control Applications[C].Vancouver;Springer Co.Ltd,1993.53-58
[7]郭戈,于伟,柴天佑连铸过程建模与控制[J].控制与决策.1997,12(增刊):1-6.[8]T Hesketh.D J Clements, R William.Adaptivc mould level control for continuous steel slab casting[J],Auromatica,1993,29(4):851-864.[9]Thomas, B Joseph.Generalized predictive control with dynamic filtering for proce control applications[A].American Automatic Control Council.Proceedings American Control Conference[C].New York:IEEE, 1993.1741-1745.[10]G Guo, W Wang, T Y Chai.Synthetic auto-tuning PID control of continuous casting proce[J].Journal of Iron and Steel Research, 2000,7(1):17-21.[11]M Turokawa, T Kondo, T Mita, et al.Development of mould level control in continuous casting by H control theory[A].J Theochairs.Preprints of 2 IEEE Conference on Control Applications[C],Vancouver: Springer Co.Ltd,1993.865-871.[12]Y Saha , R Ahuia Steel flow and mixing of melt in steelmaking tundish[J].Iron making and steelmaking 1986,(5): 241 一247 [13] M W Manfred, Slab configuration and operation-a review[J].Steelmaking and Casting production.1996 , 11(2): 367 一38l [14]周智青.中间包内流体流动及夹杂物去除的研究[D]北京:北京科技大学出版社,1997 [15]S D Melvi11e Evaluating.steelmaking and casting practices,which affect quality[J].Steelmaking and Casting production.1995,10(4):563-569 [16] 郭戈,连铸过程建摸与控制方法的研究[D] 沈阳:东北大学出版社.1998 [17]A K sinka , Y sahai Mathematical modeling of inclusion transport and rouva ] in continuous casting, tundish[J] ISIJ International , 1993,33(5)556 一569
[18] K H Tacke , J C Ludwig steel flow and inclusion separation continuous casting tundish[J] Steel Research 1987,58(6):262 一269 [19] 张炯明,郝冀成,李保宽.连铸结晶器中夹杂物粒子运动轨迹的数值模拟[J] 中国有色金属学报.1997, 7(增刊l): 82-86 [ 20]S Minoru, Recent Japanese , studies on control of non-metallic inclusion , in steel[A].Proceeding 1 International Congre Science and Technology of Steelmaking[C] Japan :[s.n.] 1996.68 一74.st
nd
nd
[21]H Shibata.Characteristic of agglomeration behaviors of inclusion particles on molten steel surface [J].CAMP一ISIJ 1996,23(10):708一713 [22] O J Ibegbusi.Application of the two-fluid model of turbulence to tundish problems[J].ISIJ International 1994 .34(9):732一738 [23] R A Cockerell .Design study for continuous、caster tundish weigh control and ladle steel flow estimate[A] , W H Kwon.Proceedings ASI'97[C].Oxfod:Pergamon Pre Ltd,l997 , 308 一313 [24]K Asano.T Kaji.H Aoki,et al.Robust molten steel level control for continuous casting [A].IFEE Proceedings 35th Conference on Decision and Control [C] New York : IFFE , 1996.1245-1250.[25]R D Keyser Improved mould – level control ] in a continuous steel casting line[J] Control Engineering Proctice.1997.5(2):231 一237.[26]G Guo , J F Qiao ,W Wang.Fuzzy predictive mould level control of continuous casting [A] M S Ko Proceedings and Asian Control Conference [C] .Korea :[s.n.],1997.57 一61 [27]郭戈,王伟.铸坯凝固过程计算机模拟[J]中国有色金属学报,1999(2): 339-344 [28]S J Schade.钢清洁度测定[J] 国外钢铁,1994 ,12(l): 22-251
第4篇:连铸机
炼钢厂转炉动态炼钢控制系统的开发与应用
陈克川
唐山科技职业技术学院
摘 要:本文着重讲述了莱钢炼钢厂转炉动态炼钢控制系统,详细的介绍了转炉动态炼钢的特点、特征,并对其关键技术进行了描述。
关键词:计算机过程级;炉气分析;动态模型; 静态模型。
1、引言
近年来,计算机过程级控制冶金行业得到了广泛的应用,目前在国内的多家钢厂都在不同规模上实现了计算机控制。为了提高产品的产量和质量,扩大品种,降低成本和消耗,稳定生产工艺,在转炉上使用计算机过程控制已经成为必要。生产上采用动态炼钢以后,可以大幅度提高产量、质量,有效的优化全生产线生产过程,对于迅速提高经济效益起到立杆见影的效果。因此,炼钢厂50吨转炉进行动态炼钢控制势在必行。
2、系统概述
莱钢4#转炉,为无副枪顶吹型式,年设计生产能力为50万吨,于2002年11月建成并投入使用,经过扩容改造,目前具备了80万吨的生产能力,它与大方坯连铸机构成了产能匹配的短流程生产线。
该转炉动态炼钢控制系统于2004年01月开始实施,运行稳定正常,能够完成动态炼钢对数据的需求。本系统主要完成实现了的生产管理,包括生产作业状况显示和传送等;并对吹炼开始、吹炼结束等状态进行跟踪;能够对相关的数据进行采集,并进行存储、记录;实现了对主料和辅料的计算及管理;实现了对废钢、生铁的配比及称量的管理;能够打印各种报表和记录;能够对转炉的作业时间进行管理;实现了与连铸机、化验室等计算机通讯。
3、国内外现状对比分析
为了提高产品的产量和质量,扩大品种,降低成本和消耗,稳定生产工艺,使用计算机控制生产比其他的流程更为必要,故在钢铁工业,转炉是首先使用计算机控制的机组。目前在国外转炉普遍采用了计算机控制,国内从20世纪70年代开始对转炉计算机控制进行了大量的实验研究,取得了可喜的成果。目前,国内的几家钢厂的转炉在不同的规模上实现了计算机控制。进行生产过程的计算机控制十分必要。转炉炼钢为紧凑型生产,因此引入高性能计算机控制系统是提高产量和质量的必要条件,为此我们选用了静态模型和动态模型。
4、主要的特点、特征
(1)基础级到计算机级数据传输程序设计:50吨转炉数据传输的控制程序通过使用西门子公司专用的编程软件STEP7,并采用LAD、CSF、STL三种灵活的方式编制而成。整套控制程序采用模块化/结构化编程方法:控制程序分为若干控制部分,每一部分的控制程序及数据分别编制在不同的FC、FB以及DB程序块中,并由主程序OB1在每次扫描周期中依次调用来实现各自的控制功能;此外,在每一个程序块中,加以详细的注释以进行说明。这种编程方法使得程序的查阅、功能的扩充及修改变得更加容易,大大增强了程序的灵活性、可读性、实用性和维护性。
(2)炉气分析系统通过对转炉炉气(如CO、CO
2、N
2、O2Ar等)进行分析,实现对冶炼进程的检测。
(3)数据传输控制系统中的监控系统,具有数据录入、显示、传送、自诊断/报警、历史趋势记录等功能,为动态炼钢提供了正确无误的数据和对原始数据的记录功能。
5、关键技术
(1)氧枪精确定位控制:
在转炉炼钢生产中,基础控制级的氧枪定位的精确性直接影响吹炼终点的钢水温度和碳含量,同时,对生产安全和炉龄、枪龄也有很大的影响。因此,我们将氧枪定位作为一个重点技术问题解决,硬件上采用德国TURCK增量型编码器和西门子FM450高速计数模板配合,完成氧枪位置信号的采集。定位数据的处理采用点线结合的方法,对于极限位、待吹位、开氧/闭氧位、变速位等需精确定位的关键点,采用10次往返计数值加权平均的方法,以抵消提升加速和下降加速引起的卷扬钢绳弹性形变所造成的定位误差。对于纵轴线上的枪位显示数据,则采用自动定量补偿和人工校准相结合的方法予以处理:即当氧枪提升和下降的过程中,在编码器读数的基础上,分别加或减一个补偿量,这个补偿量是对氧枪1000次往返读数与实测枪位误差的统计处理结果,用这一数据补偿,在氧枪的工作行程上,可以达到+/-2CM的定位精度,完全能够满足枪位指示的精度要求。另外,为提高系统的可靠性,通过MMI设置了枪位校准按钮,当控制误差较大时,可以把氧枪下降到校准点,按下校枪按钮进行软手动校枪,此时定位系统自动初始化,恢复设定精度。
枪位计算公式如下:
L升=(W+M-N升)×(3.1416×D)÷S
L降=(W+M+N降)×(3.1416×D)÷S
其中:
L升:提升过程实际枪位
L降:下降过程实际枪位
W:计数模板当前计数值
N升:提升过程补偿量
N降:下降过程补偿量
M:校准点初始计数读数
S:编码器每周脉冲数
D:提升装置卷扬辊直径
(2)炉气分析系统:
炼钢厂四号转炉动态炼钢炉气分析系统分为三个部分,即EMG模块、SPS模块和图表站。其中EMG模块运用于DOS下,主要实现数据的分析;SPS模块运行于UNIX下,主要用来采集控制阀(气体阀)的参数;图表站用来实现气体含量的显示。
转炉动态炼钢系统炉气分析采用俄罗斯EMG-20-1型飞行时间质谱仪,EMG-20-1是一种时间质朴仪,专为记录炼钢转炉或其它冶炼过程所排放气体的质谱图并同时分析其中多个成分含量而设计。它属于过程质谱,能对转炉排出的烟气进行实时、连续监控,从而达到优化工作参数,对冶炼工艺和设备进行监控、管理,完善工艺过程的目的。
EMG-20-1质谱仪于2004年1月初开始安装。质谱仪安装在转炉的超净化房间,采用真空泵将炉气吸入质谱仪进行分析。质谱仪在气体到达后0.3S的时间内将炉气分析出来,其中包括CO、O
2、CO
2、H
2、N
2、Ar六种气体。
质谱仪的原理是将采集到的炉气气体样品引入电离区,通过电子撞击,电离原子和分子以形成带正电荷的离子。经过固定电势的加速电场,具有相同初始功能的离子被抛出。按照离子质荷比的不同,在无场的漂移空间离子得以分开。离子的分离依靠离子在无场漂移区的飞行时间与其质荷比的相关性。在具有相同功能的情况下较轻的离子较之较重的离子具有更高的速度并能较早到达检测器。通过质谱仪在时间刻度上的图谱记录和对这些数据的处理可以确定混合气体的成分及百分比含量。现在根据分析的CO的含量可以来指导转炉的煤气回收,根据H2的含量可以判定氧枪是否漏水。
飞行时间质谱仪的反射器,加长了离子的飞行时间,减少了由离子源环境引起的离子初始能量分散的问题,从而改进了分辨能力和灵敏度。在反射器中离子借助静电离子透镜折回,具有同等质量的离子的飞行时间得到校正,聚成离子束。在开始具有较高速度(能量)的离子通过了较长的飞行路线,所以和较慢的离子到达检测器的时间相同。
(3)静态控制模型:
静态控制模型的主要任务是根据原料的条件寻找最佳的原料配比,并根据已知的配料确定冶炼的方案。转炉静态控制模型是转炉炼钢计算机终点控制的核心,其精度直接影响到终点钢水碳含量与温度同时命中率的高低。依据建立模型方法的不同,静态控制模型有理论型、统计型和经验型。炼钢厂50吨转炉,采用经验型,构成炉气分析终点控制静态模型。该模型建立在炉气分析数据的基础上,实现终点控制。主要终点控制的参数为:O、C、Mn、P、温度等。
(4)动态控制模型:
转炉动态控制模型则是对静态控制模型精度的补偿。根据物料平衡、能量平衡、化学动力学、化学热力学等理论,以及炉气分析结果建立脱C速度计算模型、温度变化计算模型、其他元素变化计算模型等,采用增量校验技术和神经网络技术实现对分析结果延误的矫正和系统误差的消除,提高转炉的终点命中率。
动态控制模型主要由炉气定碳模块、温度预报模块、喷溅预报模块、冷却剂控制模块构成。模型的自学习、自适应功能的实现是提高模型精度和使用性的关键。根据具体方式的不同,模型对误差的处理方法大体又可分为数值处理方法和人工智能方法两类。
数值处理方法:T.Hara[1]将每个预测模型都表示为
y'=F(x)+△a
式中,学习项△a在每炉喷吹结束后及时学习实际数据,并预测下一炉y-F(x)值。
另外,还可采用动态控制模型和反馈计算模型,其中反馈模型基于炉气分析结果,分析动态模型的误差趋势,并根据相应的规则确定反馈量,从而达到调整动态模型误差的目的。
人工智能方法:
人工智能方法模拟了人类专家的思维与决策过程,它可以引进人类经验并提高模型弹性,从而弥补传统控制模型的部分缺陷和不足。
(5)管理功能:
炼钢生产是物流和信息流密集的生产过程,保持物流和信息流的顺畅,是生产管理的重要环节,转炉动态炼系统为过程级控制,信息采集、处理功能强大的监控软件,为实现部分过程级控制功能提供了可能,基于这一情况,在自控系统中开发了辅助管理功能。这一功能主要侧重两个方面:
生产数据采集和上传:实现这一功能的基础是构建了高速的通讯网络,实现了全线数据的完整采集,然后通过网络接口上传给炼钢厂生产管理的局域网。炼钢厂4#转炉系统包括三个子系统:转炉本体子系统,转炉煤气回收子系统,转炉余热利用子系统。采集上传的数据为车间和炼钢厂两级生产管理和组织调度提供依据,也为进一步挖潜增效和优化工艺提供了支持,有效地提升了生产管理的水平。
操作指令记录和设备状态记录:在一个复杂系统的故障分析和责任确认中,必须有完善的原始数据记录作为依据,用于分析故障当时的现象和设备状态,找出故障的真正原因,从根本上解决问
题,避免同类故障的重复,减少停机时间,这一功能的应用,间接的成果在于,随着生产的持续进行,故障会逐渐减少。
6、结束语
据该系统投运近一年来的实际效果看,该动态炼钢控制系统设计合理,控制先进,功能丰富,运行安全稳定可靠,很好地完成了转炉的过程级控制,确保了生产的顺行,取得了极好的经济效益。该自控系统具有一定的自扩展、自学习功能,在本行业及其它相关行业具有很高的推广价值。进入正常的生产后,该系统仍然暴露出了一些问题,如:系统中个别设备的控制功能及网络通讯能力还需要根据生产要求做进一步修改、补充、完善。只有根据生产中的实际问题,进一步修改、完善软/硬件,以最大限度满足生产的需要,才能使系统更加趋于完美。
参考文献 《炼钢工艺学》
第5篇:连铸工艺
连铸工艺流程介绍
----冶金自动化系列专题
【导读】:转炉生产出来的钢水经过精炼炉精炼以后,需要将钢水铸造成不同类型、不同规格的钢坯。连铸工段就是将精炼后的钢水连续铸造成钢坯的生产工序,主要设备包括回转台、中间包,结晶器、拉矫机等。本专题将详细介绍转炉(以及电炉)炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。【发表建议】
连铸的目的: 将钢水铸造成钢坯。
连铸的工艺流程:
将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。【查看全文】
连铸自动化控制工艺流程图
连铸自动化控制主要有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等控制技术。【查看全文】
连铸的主要工艺设备介绍:
钢包回转台
钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。【查看全文】
中间包
中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。【查看全文】
结晶器
在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。【查看全文】
拉矫机
在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。【查看全文】
电磁搅拌器
电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。【查看全文】
冷却喷嘴
冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。【查看全文】
火焰切割机
火焰切割机也叫氧气切割。根据切割钢板的厚度安装适当孔径的割嘴;【查看全文】
连铸系统也是一个比较复杂的系统,用到的自动化产品比较多,下面列举部分产品出来:
常用到的自动化设备:PLC、组态软件、变频器、工控机、工业以太网交换机等等。
连铸自动化控制工艺流程图
图片:
连铸自动化控制工艺流程图:
将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。
有连铸机拉坯辊速度控制、结晶器振动频率的控制、定长切割控制等主要控制技术。
图片:
水平连铸控制工艺流程图: 图片:
图片:
图片:
图片:
图片:
生产线实景图:
连铸工艺详解
连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。
连铸钢水的准备
一、连铸钢水的温度要求:
钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。
钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。
二、钢水在钢包中的温度控制:
根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。
实际生产中需采取在钢包内调整钢水温度的措施: 1)钢包吹氩调温
2)加废钢调温
3)在钢包中加热钢水技术
4)钢水包的保温
中间包钢水温度的控制
一、浇铸温度的确定
浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。
浇铸温度的确定可由下式表示(也称目标浇铸温度):
T=TL+△T。
二、液相线温度:
即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:
T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]}
三、钢水过热度的确定
钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。
钢种类别
过热度
非合金结构钢
10-20℃
铝镇静深冲钢
15-25℃
高碳、低合金钢
5-15℃
四、出钢温度的确定
钢水从出钢到进入中间包经历5个温降过程:
△T总=△T1+△T2+△T3+△T4+△T5 △T1出钢过程的温降;
△T2出完钢钢水在运输和静置期间的温降(1.0~1.5℃/min);
△T3钢包精炼过程的温降(6~10℃/min);
△T4精炼后钢水在静置和运往连铸平台的温降(5~1.2℃/min);
△T5钢水从钢包注入中间包的温降。
T出钢 = T浇+△T总
控制好出钢温度是保证目标浇铸温度的首要前提。具体的出钢温度要根据每个钢厂在自身温降规律调查的基础上,根据每个钢种所要经过的工艺路线来确定。
拉速的确定和控制
一、拉速控制作用:
拉速定义:拉坯速度是以每分钟从结晶器拉出的铸坯长度来表示。拉坯速度应和钢液的浇注速度相一致。拉速控制合理,不但可以保证连铸生产的顺利进行,而且可以提高连铸生产能力,改善铸坯的质量.现代连铸追求高拉速。
二、拉速确定原则:
确保铸坯出结晶器时的能承受钢水的静压力而不破裂,对于参数一定的结晶器,拉速高时,坯壳薄;反之拉速低时则形成的坯壳厚。一般,拉速应确保出结晶器的坯壳厚度为12-14mm。
影响因素:钢种、钢水过热度、铸坯厚度等。
1)机身长度的限制
根据凝固的平方根定律,铸坯完全凝固时达到的厚度: 又机身长度:
得到拉速:
2)拉坯力的限制
拉速提高,铸坯中的未凝固长度变长,各相应位置上凝固壳厚度变薄,铸坯表面温度升高,铸坯在辊间的鼓肚量增多。拉坯时负荷增加。超过拉拔转矩就不能拉坯,所以限制了拉速的提高。3)结晶器导热能力的限制
根据结晶器散热量计算出,最高浇注速度:
板坯为2.5米/分
方坯为3-4米/分
4)拉坯速度对铸坯质量的影响
(1)降低拉速可以阻止或减少铸坯内部裂纹和中心偏析
(2)提高拉速可以防止铸坯表面产生纵裂和横裂
(3)为防止矫直裂纹,拉速应使铸坯通过矫直点时表面温度避开钢的热脆区。
5)钢水过热度的影响
一般连铸规定允许最大的钢水过热度,在允许过热度下拉速随着过热度的降低而提高,如图1所示。
6)钢种影响:就含碳量而言,拉坯速度按低碳钢、中碳钢、高碳钢的顺序由高到低。就钢中合金含量而言,拉速按普碳钢、优质碳素钢、合金钢顺序降低。
图1 拉速与温度对应表
第四节 铸坯冷却的控制
钢水在结晶器内的冷却即一冷确定,其冷却效果可以由通过结晶器壁传出的热流的大小来度量,如图2所示。
图2 钢水在结晶器内的冷却
1)一冷作用:一冷就是结晶器通水冷却。其作用是确保铸坯在结晶器内形成一定的初生坯壳。
2)一冷确定原则:一冷通水是根据经验,确定以在一定工艺条件下钢水在结晶器内能够形成足够的坯壳厚度和确保结晶器安全运行的前提。通常结晶器周边供水2L/mm·min。进出水温差不超过8℃,出水温度控制在45-500℃为宜,水压控制在0.4-0.6Mpa。
3)二冷作用:二次冷却是指出结晶器的铸坯在连铸机二冷段进行的冷却过程.其目的是对带有液芯的铸坯实施喷水冷却,使其完全凝固,以达到在拉坯过程中均匀冷却.4)二冷强度确定原则:二冷通常结合铸坯传热与铸坯冶金质量两个方面来考虑.铸坯刚离开结晶器,要采用大量水冷却以迅速增加坯壳厚度,随着铸坯在二冷区移动,坯壳厚度增加,喷水量逐渐降低.因此,二冷区可分若干冷却段,每个冷却段单独进行水量控制.同时考虑钢种对裂纹敏感性而有针对性的调整二冷喷水量.5)二冷水量与水压:对普碳钢低合金钢,冷却强度为:1.0-1.2L/Kg钢。对低碳钢、高碳钢,冷却强度为:0.6-0.8L/Kg钢。对热裂纹敏感性强的钢种,冷却强度为:0.4-0.6L/Kg钢,水压为0.1-0.5MPa,如图3所示。
图3 凝固系数与二冷水量关系
连铸过程检测与自动控制
一、连铸过程自动检测
(一)中间包钢液温度测定
1)中间包钢液温度的点测
用快速测温头及数字显示二次仪测量温度,如图4所示。
图4 二次温度测量仪
2)中间包钢液温度的连续测定
采用连续测温热电偶对中间包钢液温度进行连续测量,如图5所示。
图5 连续测温热电偶
(二)结晶器液面控制
1)放射性同位素测量法如图6所示:
图6 放射性同位素测量法
2)红外线结晶器液面测量法如图7所示:
图7 红外线结晶器液面测量法
3)热电偶结晶器液面测量法如图8所示:
图8 热电偶结晶器液面测量法
4)激光结晶器液面测量法如图9所示:
图9 激光结晶器液面测量法
(三)连铸机漏钢预报装置如图10所示:
图10 连铸机漏钢预报装置
(四)连铸二次冷却水控制如图11所示:
图11 连铸二次冷却水控制
(五)铸坯表面缺陷在线检测
1)工业电视摄象法如图12所示:
图12 工业电视摄象法
2)涡流检测法如图13所示:
图13 涡流检测法
二、连铸坯表面质量及控制
(一)连铸过程质量控制
1)提高钢纯净度的措施
(1)无渣出钢
(2)选择合适的精炼处理方式
(3)采用无氧化浇注技术
(4)充分发挥中间罐冶金净化器的作用
(5)选用优质耐火材料
(6)充分发挥结晶器的作用
(7)采用电磁搅拌技术,控制注流运动
(二)连铸坯表面质量及控制
连铸坯表面质量的好坏决定了铸坯在热加工之前是否需要精整,也是影响金属收得率和成本的重要因素,还是铸坯热送和直接轧制的前提条件。
连铸坯表面缺陷形成的原因较为复杂,但总体来讲,主要是受结晶器内钢液凝固所控制,如图14所示。
图14 连铸坯表面缺陷示意图
(三)连铸坯内部质量及控制
铸坯的内部质量是指铸坯是否具有正确的凝固结构、偏析程度、内部裂纹、夹杂物含量及分布状况等。
凝固结构是铸坯的低倍组织,即钢液凝固过程中形成等轴晶和柱状晶的比例。铸坯的内部质量与二冷区的冷却及支撑系统密切相关,如图15,图16所示。
图15 铸坯内部缺陷示意图
图16 “V”形偏析
1)减少铸坯内部裂纹的措施
(1)采用压缩浇铸技术,或者应用多点矫直技术
(2)二冷区采用合适夹辊辊距,支撑辊准确对弧
(3)二冷水分配适当,保持铸坯表面温度均匀
(4)合适拉辊压下量,最好采用液压控制机构
2)夹杂物的控制
从炼钢
精炼 连铸生产洁净钢,主要控制对策是:
(1)控制炼钢炉下渣量
● 挡渣法(偏心炉底出钢、气动法、挡渣球)
● 扒渣法:目标是钢包渣层厚<50mm,下渣2Kg/t
(2)钢包渣氧化性控制
● 出钢渣中高(FeO+MnO)是渣子氧势量度。(FeO+MnO)↑板胚T[O]↑
(3)钢包精炼渣成分控制
不管采用何种精炼方法(如RH、LF、VD),合理搅拌强度和合理精炼渣组成是获得洁净钢水的基础。
合适的钢包渣成分:CaO/ Al2O3=1.5~1.8,CaO/ SiO2=8~13,(FeO+MnO)<5%。高碱度、低熔点、低氧化铁、富CaO钙铝酸盐的精炼渣,能有效吸收大颗粒夹杂物,降低总氧。
(4)保护浇注
● 钢水保护是防止钢水再污染生产洁净钢重要操作
● 保护浇注好坏判断指标:-△[N]=[N]钢包-[N]中包;-△[Al]s=[Al]钢包-[Al]中包
● 保护方法:①中包密封充Ar;②钢包
中间包长水口,△[N]=1.5PPm甚至为零;③中间包
结晶器浸入式水口
(5)中间包控流装置
● 中间包不是简单的过渡容器,而是一个冶金反应容器,作为钢水进入结晶器之前进一步净化钢水
● 中间包促进夹杂物上浮其方法:
a.增加钢水在中间包平均停留时间t:t=w/(a×b×ρ×v)。中间包向大容量深熔池方向发展。
b.改变钢水在中间包流动路径和方向,促进夹杂物上浮。
(6)中间包复盖剂
中间包是钢水去除夹杂物理想场所。钢水面上复盖剂要有效吸收夹杂物。
● 碳化稻壳;
● 中性渣:(CaO/SiO2=0.9~1.0)
● 碱性渣:(CaO+MgO/SiO2≥3)
● 双层渣
渣中(SiO2)增加,钢水中T[O]增加。生产洁净钢应用碱性复盖剂。
(7)碱性包衬
钢水与中间包长期接触,钢水与包衬的热力学性能必须是稳定的,这是生产洁净钢的一个重要条件。包衬材质中SiO2增加,铸坯中总氧T[O]是增加,因此生产洁净钢应用碱性包衬。
对低碳Al-K钢,中间包衬用Mg-Ca质涂料(Al2O3→0),包衬反应层中Al2O3可达21%,说明能有效吸附夹杂物。
(8)钢种微细夹杂物去除
● 大颗粒夹杂(>50μm)去除,采用中间包控流技术
● 小颗粒夹杂(
-中间包钙质过滤器
-中间包电磁旋转
(9)防止浇注过程下渣和卷渣
● 加入示踪剂追踪铸坯中夹杂物来源
● 结晶器渣中示踪剂变化
● 铸坯中夹杂物来源,初步估算外来夹杂物占41.6%二次氧化占 39%,脱氧产物为20%
(10)防止Ar气泡吸附夹杂物
对Al-K钢,采用浸入式水口吹Ar防止水口堵塞,但吹Ar会造成:
● 水口堵塞物破碎进入铸胚,大颗粒Al2O3轧制延伸会形成表面成条状缺陷
● <1mmAr气泡上浮困难,它是Al2O3和渣粒的聚合地,当气泡尺寸>200μm易在冷轧板表面形成条状缺陷。
为解决水口堵塞问题,可采用:
-钙处理改善钢水可浇性
-钙质水口
-无C质水口
目前还是广泛采用吹Ar来防止堵塞。生产洁净钢总的原则是:钢水进入结晶器之前尽可能排除Al2O3。
(11)结晶器钢水流动控制
三、连铸坯形状缺陷及控制
(一)鼓肚变形
带液心的铸坯在运行过程中,于两支撑辊之间,高温坯壳中钢液静压力作用下,发生鼓胀成凸面的现象,称之为鼓肚变形。板坯宽面中心凸起的厚度与边缘厚度之差叫鼓肚量,用以衡量铸坯彭肚变形程度。
减少鼓肚应采取措施 :
(1)降低连铸机的高度
(2)二冷区采用小辊距密排列;铸机从上到下辊距应由密到疏布置
(3)支撑辊要严格对中
(4)加大二冷区冷却强度
(5)防止支撑辊的变形,板坯的支撑辊最好选用多节辊
图17 铸坯鼓肚示意图
(二)菱形变形
菱形变形也叫脱方。是大、小方坯的缺陷。是指铸坯的一对角小于90°,另一对角大于90°;两对角线长度之差称为脱方量。
应对菱变的措施 :
(1)选用合适锥度的结晶器
(2)结晶器最好用软水冷却
(3)保持结晶器内腔正方形,以使凝固坯壳为规正正的形状
(4)结晶器以下的600mm距离要严格对弧;并确保二冷区的均匀冷却
(5)控制好钢液成分
(三)圆铸坯变形
圆坯变形成椭圆形或不规则多边形。圆坯直径越大,变成随圆的倾向越严重。形成椭圆变形的原因有:
(1)圆形结晶器内腔变形
(2)二冷区冷却不均匀
(3)连铸机下部对弧不准
(4)拉矫辊的夹紧力调整不当,过分压下
可采取相应措施:
(1)及时更换变形的结晶器
(2)连铸机要严格对弧
(3)二冷区均匀冷却
(4)可适当降低拉速
(四)夹杂物的控制
提高钢纯净度的措施:
(1)无渣出钢
(2)选择合适的精炼处理方式
(3)采用无氧化浇注技术
(4)充分发挥中间罐冶金净化器的作用
(5)选用优质耐火材料
(6)充分发挥结晶器的作用
(7)采用电磁搅拌技术,控制注流运动
(五)间包冶金
当前对钢产品质量的要求变得更加严格。中间包不仅仅只是生产中的一个容器,而且在纯净钢的生产中发挥着重要作用。
70年代认识到改变中间包形状和加大中间包容积可以达到延长钢液的停留时间,提高夹杂物去除率的目的;安装挡渣墙,控制钢液的流动,实现夹杂物有效碰撞、长大和上浮。80年代发明了多孔导流挡墙和中间包过滤器。
在防止钢水被污染的技术开发中,最近已有实质性的进展。借助先进的中间包设计和操作如中间包加热,热周转操作,惰性气氛喷吹,预熔型中间包渣,活性钙内壁,中间包喂丝,以及中间包夹杂物行为的数学模拟等,中间包在纯净钢生产中的作用体现得越来越重要。
在现代连铸的应用和发展过程中,中间包的作用显得越来越重要,其内涵在被不断扩大,从而形成一个独特的领域——中间包冶金。
中间包冶金的最新技术:
(1)H型中间包
(2)离心流中间包
(3)中间包吹氩
(4)去夹杂的陶瓷过滤器
(5)电磁流控制
图18 H型中间包 [连铸设备]钢包回转台
钢包回转台
钢包回转台:设在连铸机浇铸位置上方用于运载钢包过跨和支承钢包进行浇铸的设备。由底座、回转臂、驱动装置、回转支撑、事故驱动控制系统、润滑系统和锚固件6部分组成。
钢包回转台的作用是将位于受包位置的满载钢包回转至浇钢位置,准备进行浇注,同时将浇完钢水的空包转至受包位置,准备运走。钢包回转台大致有3种类型:
单臂钢包回转台:由底座、立柱、上转臂、上转臂驱动装置、下转臂、下转臂驱动装置组成。蝶形钢包回转台:由底座、升降液压缸、回转架、钢包支座、回转臂、平行连杆、驱动装置、防护板组成。
钢包回转台是连铸机的关键设备之一,起着连接上下两道工序的重要作用。钢包回转台的回转情况基本上包括两侧无钢包、单侧有钢包、两侧有钢包三种情况,而单个钢包重量已超过140吨。三种情况下,钢包回转台受力有很大不同,但无论在何种情况下,都要保证钢包回转台的旋转平稳,定位准确,起停时要尽可能减小对机械部分的冲击,为减少中间包液面波动和温降,要缩短旋转时间。因此,我们在变频器的容量选择上,留有余地,即比电机功率加大一级。同时利用变频器的s曲线加速功能,通过调整s曲线保证加、减速曲线平滑快速,减少对减速机的冲击,再通过PLC判断变速限位、停止限位实现旋转过程中高、低速自动变换及到位停车,同时满足了对旋转时间和平稳运行的要求。
[连铸设备]中间包
中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去。
连铸机钢水包和结晶器之间钢水过渡的装置,用来稳定钢流,减小钢流对坯壳的冲刷,以利于非金属夹杂物上浮,从而提高铸坯质量。
[连铸设备]结晶器
在连续铸造、真空吸铸、单向结晶等铸造方法中,使铸件成形并迅速凝固结晶的特种金属铸型。
结晶器包括:
直型结晶器、弧形结晶器 curved mold:用于弧型和超低头型(椭圆型)连铸机上。
组合式结晶器 composite mold:由四块壁板组成,每块壁板又由一块铜板和一块钢(铁)板用螺栓连接而成。
多级结晶器 multi stage mold
调宽结晶器 adjustable mold:宽度可调的结晶器,一般只用于板坯连铸。
结晶器是连铸机的核心设备之一,直接关系到连铸坯的质量。结晶器的振动频率要求准确,并根据拉坯速度自动调整,在高振频时,由于电机负载率上升,转差率增加,导致振动频率有所降低,而为了保证振动频率的精确,需要打开变频器的转差补偿控制,在负载增加时,使变频器自动增加输出频率以提供在没有速度降低情况下所需要的电机转差率,补偿量正比于负载的增加量,并在整个调速范围内都起作用。
另外,结晶器的振动是由电机带动偏心机构旋转来实现的,因此表现为输出电流及母线电压呈现周期性震荡,在振动频率较高时有引起母线过电压故障的可能,通过允许变频器的母线调节功能,使变频器会基于直流母线电压自动调整输出频率,监测到母线电压瞬时升高时变频器会适当增加输出频率以减小引起母线电压升高的再生能量,这样做降低了出现变频器过压故障的可能性。
[连铸设备]拉矫机
拉矫机
在连铸工艺中,连铸机拉坯辊速度控制是连铸机的三大关键技术之一,拉坯速度控制水平直接影响连铸坯的产量和质量,而拉坯辊电机驱动装置的性能又在其中发挥着重要作用。交流电机变频调速技术日益成熟,交流变频驱动调速平稳,调速范围宽,对机械冲击低,交流电机维护量低,交流变频调速已取代直流调速,完全能够满足拉坯辊速度控制的需要。
4、5号连铸机的拉矫机为五辊双机架三驱动,上拉坯辊、下拉坯辊、矫直辊由三台同型号电机共同驱动,完成引锭杆的上下传送运行和连铸坯牵引,三台电机必须保持同步,与一般的同步要求不同的是要保证三个辊面的线速度相同,而不是三台电机的转速相同,以避免出现负载分配不均引起母线过压、欠压、过载故障。
三台变频器接受相同的速度指令,按照同一频率运行,但由于三辊处于一个半径8m的圆弧段的不同位置上,若要保持三个辊面的线速度相同,则三台电机的转速实际应有轻微差别,加上三台电机的参数不可能完全相同,这就造成了三台电机同步的困难。如果打开母线调节功能,虽然可以在一定程度上避免由于不同步造成的母线电压升高,但会造成电机转速的不稳定,从而使拉速值波动,进一步影响到结晶器钢水液面和二冷配水的稳定,甚至有造成事故的危险。为此,我们利用变频器内置的PI控制功能,使三台电机构成主从驱动系统,即以上拉坯电机作为主驱动电机,工作在速度调节方式,下拉坯电机和矫直电机作为从动电机,工作在带有速度修正的速度调节方式下,通过比较主从电机的力矩电流产生偏差信号,从而修正从动电机的速度。变频器间的力矩电流信号传送可以通过变频器内置的模拟量输入、输出通道来实现,无需另外添加硬件。这种方法构成的主从驱动系统,结构简单,完全利用变频器内置功能实现,可以连续自动完成速度修正,应用在多辊传动的拉矫机上效果非常理想。
拉矫机和结晶器振动装置采用变频器调速系统,拉矫机变频器的启动、停止以及调速由PLC发送给拉矫机变频器,拉矫机的实际速度FM经光电隔离后再反馈给PLC,然后由PLC传送给相应仪表显示实际值。结晶器振动采用同调方式,即振动频率随拉速变化而变化,即根据下面的公式,来控制结晶器振动频率f:
计算出振动频率f由PLC发送给结晶器振动变频器,使结晶器的振动适应于拉速变化,系统框图如图所示。
[连铸设备]电磁搅拌器
电磁搅拌器 electromagnetic stirring, EMS:连续铸钢时,利用电磁力控制钢液凝固过程,改善铸坯质量的工艺。也称EMS技术。
电磁搅拌器(Electromagnetic stirring: EMS)的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水内,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。
电磁搅拌器的安装位置和搅拌器模式
根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式
结晶器电磁搅拌:Mold Electromagnetic stirring: MEMS 搅拌器安装在结晶器铜管外面 二冷区电磁搅拌:Strand Electromagnetic Stirring: SEMS 搅拌器安装在铸坯外面 凝固末端电磁搅拌:Final Electromagnetic stirring:FEMS 用于方坯连铸 搅拌器安装在铸坯外面
电磁搅拌器的冶金效果
搅拌位置
冶金效果
适用钢种
MEMS
增加等轴晶率
低合金钢
减少表面和皮下的气孔和针孔
弹簧钢
减少表面和皮下的夹杂物
冷轧钢
坯壳均匀化
中高碳钢等
稍稍改善中心偏析
SEMS
扩大等轴晶率
不锈钢
减少内裂
改善中心偏析
工具钢
减少中心疏松
FEMS
细化等轴晶
弹簧钢
有效地改善中心偏析
轴承钢
有效地改善中心缩孔和疏松
特殊高碳钢
[连铸工艺]火焰切割的工艺
厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:
(1)根据切割钢板的厚度安装适当孔径的割嘴;
(2)将氧气和燃气压力调至规定值;
(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;
(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;
(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;
(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;
(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
定尺切割
定尺方式有碰球定尺和非在线定尺切割:
(1)碰球定尺
即切割机定尺脉冲信号由定尺碰球发出,但由于钢坯表面的氧化皮的导电率差,尽管碰到了碰球,但不一定接触良好,为防止误切,系统利用拉矫机速度信号进行积分运算来计算坯长,并与定尺信号进行比较,确保定尺信号的准确性。
(2)非在线定尺切割
利用专门的非在线式铸坯长度测量装置,根据热坯热辐射的原理,通过探头锁定铸坯在导轨内的区域,当铸坯进入区域并占满整个区域后发出定尺信号,然后再给出剪切命令。
氧气切割的基本原理及过程。
氧气切割是利用气体火焰的热能将工件切割处预热到燃点后,喷出高速切割氧流,使金属燃烧并放出热量而实现切割的方法。气割过程有三个阶段:
⑴预热 气割开始时,利用气体火焰(氧乙炔焰或氧丙烷焰)将工件待切割处预热到该种金属材料的燃烧温度——燃点(对于碳钢约为1100~1150℃)。
⑵燃烧 喷出高速切割氧流,使已达燃点的金属在氧流中激烈燃烧,生成氧化物。
⑶吹渣 金属燃烧生成的氧化物被氧流吹掉,形成切口,使金属分离,完成切割过程。
氧气切割的三条件:
金属材料要进行氧气切割应满足以下三个条件:
1)金属燃烧生成氧化物的熔点应低于金属熔点,且流动性要好。
2)金属的燃点应比熔点低。
3)金属在氧流中燃烧时能放出大量的热量,且金属本身的导热性要低。
符合上述气割条件的金属有纯铁、低碳钢、中碳钢、低合金钢以及钛。其它常用的金属材料如铸铁、不锈钢、铝和铜等由于不满足此三条件,所以不能应用氧气切割,这些材料目前常用的切割方法是等离子弧切割。
[连铸设备]冷却喷嘴
连铸二次冷却的目的是对离开结晶器后的铸坯进行连续冷却 ,使之逐渐凝固 ,到切割机前完全凝固。凝固过程受铸坯的导热性、喷雾介质的冷却效果、以及铸坯质量等的限制。凝固过程应控制铸坯表面温度在浇注方向均匀下降。所以连铸坯二次冷却喷嘴的冷态特性 ,对连铸生产和保证连铸坯质量是非常重要的。对喷嘴生产厂家生产的喷嘴喷头的材质 ,要求有足够的强度 ,否则在运输、安装和检修中一旦有磕碰、紧固等现象 ,会造成喷嘴的水流量、喷射角度和水流密度分布变化 ,对连铸生产有不良影响。
冷却喷嘴具有结构简单、喷雾均匀的特点,根据喷雾面积需要,可在集管上安装许多喷嘴,当喷嘴均匀排列时,可保证喷雾的互相交叉,并略有重叠部分,使整个集管喷射分布均匀;主要适用于连铸机、初轧和各种需要扁平喷雾冷却的机械设备中。
连铸二冷喷嘴的类型、喷雾方法对铸坯冷却的影响 ,各类喷嘴冷却的优缺点 ,以及环型喷嘴嘴头的材质在检修中出现的问题。对包钢引进大方坯和大圆坯的汽雾喷嘴和国产喷嘴的冷态特性进行测试研究 ,测试结果表明 ,国产喷嘴的水流密度分布在中心的左右 ,分布均匀 ,对大方坯和大圆坯的横向均匀降温有益 ,但是国产喷嘴的喷射角度在测试的五种喷嘴中 ,有四种喷嘴符合国家黑色冶金对喷嘴喷射角度的要求 ,只有D40 197-1喷嘴在高压测试时超国家要求的 +4° ,有少量国产喷嘴在同压力条件下的流量误差在 1%~ 10 %之间。
[连铸设备]火焰切割机
图片:
厚度大于50mm的厚钢板一般采用火焰切割,也叫氧气切割。其工艺大体如下:
(1)根据切割钢板的厚度安装适当孔径的割嘴;
(2)将氧气和燃气压力调至规定值;
(3)用切割点火器点燃预热焰,接着慢慢打开预热氧气阀,调节火焰白心长度,使火焰成中性焰,预热起割点;
(4)在切割起点上只用预热焰加热,割嘴垂直于钢板表面,火焰白心尖端距钢板表面1.5~2.5mm;
(5)当起点达到燃烧温度(辉红色)时,打开切割氧气阀,瞬间就可进行切割;
(6)在确认已割至钢板下表面后,就沿着切割线以适当的速度移动割嘴继续往前切割;
(7)切割终了时,先关闭切割氧气阀,再关闭预热焰的氧气阀。
[连铸设备]钢包烘烤器
钢包在新砌后和盛装钢水前一般都需要烘烤,用来烘烤钢包的装置就称为钢包烘烤器,又称烤包器。
钢包烘烤器有在线烘烤器和离线烘烤器两大类,离线烘烤器有立式烘烤器和卧式烘烤器两种,另外还有专门烘烤中间包的中间包烘烤器。
第6篇:连铸作业
连铸课程作业
J I A N G S U U N I V E R S I T Y
连
铸
课
程
作
业
连铸新技术
New Continuous Casting Technology
学院名称:
材料科学与工程学院
专业班级:
钢铁冶金
学生姓名:
学生学号:
授课教师:
2014 年5月
连铸课程作业
连铸新技术
摘要:连铸技术的出现,大幅度提高了金属收得率和铸坯质量,迅速取代了传统的浇铸技术,成为了当代钢铁工业中发展最快的技术。在其发展和完善过程中,也出现了一些连铸新技术,这些新技术使得连铸生产更安全、更节能、更高效。本文主要介绍了连铸技术的特点,以及连铸发展过程中出现的新技术。高效连铸新技术主要有: 液压非正弦振动、结晶器在线调宽、结晶器电磁制动、动态轻压下、动态二冷区控制。这些连铸新技术的开发和广泛应用, 推动了连铸高效化进程, 促进了钢铁工业的迅速发展。
关键词:连铸
新技术
New Continuous Casting Technology Abstract:Continuous casting technology’s appearance significantly improves the metal yield and casting quality, quickly replacing the traditional casting techniques, the steel industry has become the fastest growing contemporary technology.During its development and improvement, there have been some new casting technology, and these new technologies make continuous casting production safer, more energy, more efficient.This paper describes the characteristics of continuous casting technology, and the development of new technologies about casting.Efficient continuous casting technology includes: hydraulic non-sinusoidal vibration, line width adjustable mold, mold electromagnetic brake, dynamic soft reduction, dynamic secondary cooling zone control.Development and wide application of these new casting technology promotes the continuous casting proce efficiency, and promotes the rapid development of the steel industry.Keyword:Casting
New technology
连铸课程作业
目录
连铸新技术...............................................1
1、引言 ..................................................4 1.1简介.............................................4 1.2连铸机的主要设备...................................4 1.3连铸机发展历史.....................................5 1.4连铸机优越性.......................................5
2、连铸新技术 ............................................6 2.1液压非正弦振动.....................................6 2.2结晶器在线调宽.....................................7 2.3结晶器电磁制动.....................................7 2.4动态轻压下........................................8 2.5动态二冷控制.......................................8
3、结束语 ................................................9 参考文献:..............................................10
连铸课程作业
1、引言
1.1简介
连铸即为连续铸钢(英文,Continuous Steel Casting)的简称,是把液态金属用连铸机浇注、冷凝、切割而直接得到铸坯的工艺。液态金属凝固成钢水称连铸铸钢,是钢厂生产的重要部分;连铸是炼钢和轧钢的中间环节,直接影响产量、轧材的质量和成材率。在钢铁厂生产各类钢铁产品过程中,使用钢水凝固成型有两种方法:传统的模铸法和连续铸钢法。而在二十世纪五十年代在欧美国家出现的连铸技术是一项把钢水直接浇注成形的先进技术。与传统方法相比,连铸技术具有大幅提高金属收得率和铸坯质量,节约能源等显著优势。
连续铸钢的具体流程为:钢水不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的铸造工艺过程。如果连铸生产薄板坯,那么还可以进入连铸连轧工艺进行进一步的加工。连铸除了铸钢之外,还可以铸造铝、铜制产品。
1.2连铸机的主要设备
连铸机主要由中间罐、结晶器、振动机构、引锭杆、二次冷却道、拉矫机和切割机组成。
中间罐是装盛钢水的部位,加热成液态的钢水首先装在钢包中,由天车拉运至中间包上方,并把钢水倒入中间包中。中间包中的钢水再经由管道进入结晶器。液态金属的温度可以随合金大幅增加严格控制。
结晶器是连铸机的核心部件,连铸生产的主体思想是把液态的钢水直接铸造成成型产品,结晶器就是把液态钢水冷却出固态钢坯的部件,它是由一个内部不断通冷却水的金属外壳组成,这个不断输送冷却水的外壳把与之相接触的钢水冷却成固态。另一方面,结晶器的形状还决定了连铸出的钢坯外形,如果结晶器的横截面是长方形,连铸出的钢坯将是薄板坯;而正方形形状的结晶器横截面拉出的钢坯将是长条形,即方坯。
与结晶器相连的部件是振动机构,该机构在生产过程中通过不断地振动带动结晶器一同振动,排除液态金属中的气体,帮助凝结成固态外壳的钢坯从下方拉出。
引锭杆在连铸机刚开始生产时起拉动第一块钢坯的作用。在液态钢水在结晶器中凝结之后,引锭杆将钢坯从下方拉出,同时拉开连铸生产的序幕。在拉出钢坯之后,第一个经过的区域是二次冷却道,在二次冷却道中向钢坯喷射冷却水,将钢坯将逐渐从外表冷却到中心,沿着辊道进入拉矫机。拉矫机的作用是将连铸坯拉直,以便于下一步工序的进行。
拉矫机的后方是切割机。对于生产出不同形状的钢坯,使用的切割机也就不同。连铸薄板坯多用大型飞剪,而条状坯则多使用与钢坯同步前进的火焰切割
连铸课程作业
机。
1.3连铸机发展历史
从二十世纪五十年代开始,连铸这一项生产工艺开始在欧美国家的钢铁厂中,这种把液态钢水经连铸机直接铸造成成型钢铁制品的工艺相比于传统的先铸造再轧制的工艺大大缩短了生产时间,提高了工作效率。到了八十年代,连铸技术作为主导技术逐步完善,并在世界各地主要产钢国得到大幅应用,到了九十年代初,世界各主要产钢国已经实现了90%以上的连铸比。中国则在改革开放后才真正开始了对国外连铸技术的消化和移植;到九十年代初中国的连铸比仅为30%。
1.4连铸机优越性
连铸技术的迅速发展是当代钢铁工业发展的一个非常引人注目的动向,连铸之所以发展迅速,主要是它与传统的钢锭模浇铸相比具有较大的技术经济优越性,主要表现在以下几个方面。
(1)简化生产工序
由于连铸可以省去初轧开坯工序,不仅节约了均热炉加热的能耗,而且也缩短了从钢水到成坯的周期时间。近年来连铸的主要发展之一是浇铸接近成品断面尺寸铸坯的趋势,这将更会简化轧钢的工序。
(2)提高金属的收得率
采用钢锭模浇铸从钢水到成坯的收得率大约是84~88%,而连铸约为95~96%,因此采用连铸工艺可节约金属7~12%,这是一个相当可观的数字。日本钢铁工业在世界上之所以有竞争力,其重要原因之一就是在钢铁工业中大规模采用连铸。从1985年起日本全国的连铸比已超过90%。对于成本昂贵的特殊钢,不锈钢,采用连铸法进行浇铸,其经济价值就更大。我国的武汉钢铁公司第二炼钢厂用连铸代替模铸后,每吨钢坯成本降低约l70元,按年产量800万吨计算,每年可收益约13.5亿元。由此可见,提高金属收得率,简化生产工序将会获得可观的经济效益。
(3)节约能量消耗
据有关资料介绍,生产1吨连铸坯比模铸开坯省能627~1046KJ,相当于21.4~35.7kg标准煤,再加上提高成材率所节约的能耗大于100kg标准煤。按我国目前能耗水平测算,每吨连铸坯综合节能约为130kg标准煤。
(4)改善劳动条件,易于实现自动化
连铸的机械化和自动化程度比较高,连铸过程已实现计算机自动控制,使操作工人从笨重的体力劳动中解放出来。近年来,随着科学技术的发展,自动化水平的提高,电子计算机也用于连铸生产的控制,除浇钢开浇操作外,全部都由计算机控制。例如我国宝钢的板坯连铸机,其整个生产系统采用5台PFU一1500型计算机进行在线控制,具有切割长度计算,压缩浇铸控制、电磁搅拌设定、结
连铸课程作业
晶器在线调宽、质量管理、二冷水控制、过程数据收集、铸坯、跟踪、精整作业线选择、火焰清理、铸坯打印标号和称重及各种报表打印等多项控制功能。
(5)铸坯质量好
由于连铸冷却速度快、连续拉坯、浇铸条件可控、稳定,因此铸坯内部组织均匀、致密、偏析少、性能也稳定。用连铸坯轧成的板材,横向性能优于模铸,深冲性能也好,其他性能指标也优于模铸。近年来采用连铸已能生产表面无缺陷的铸坯,直接热送轧成钢材。
2、连铸新技术
高效连铸新技术主要有: 液压非正弦振动、结晶器在线调宽、结晶器电磁制动、动态轻压下、动态二冷控制。这些连铸新技术的开发和广泛应用, 推动了连铸高效化进程, 促进了钢铁工业的迅速发展[1]。
2.1液压非正弦振动
结晶器振动的目的是为了防止铸坯在凝固过程中与结晶器的铜管内壁粘结而发生挂拉裂或拉漏事故, 从而保证铸坯的表面质量, 减轻振痕深度。结晶器液压振动自发明以来, 以其具有在线调整振幅、频率和负滑脱参数, 使负滑脱率和负滑脱时间保持在最佳范围内而得到迅速推广。在高拉速、高质量的高效连铸生产中, 为获得良好的结晶器振动工艺效果, 希望结晶器振动方式为下振时间短、速度快, 上振时间长、速度慢。非正弦振动方式则具有较长的正滑动时间, 结晶器振动速度与拉坯速度之差较小的特点。
结晶器采用液压非正弦振动, 不仅可以实现在线调整振幅和正、负滑脱比例, 而且还有利于保护渣向结晶器与凝固坯壳之间的缝隙均匀渗透, 改善结晶器内壁的润滑效果, 减轻铸坯表面振痕深度, 减少拉裂、拉漏提高铸坯的表面质量。结晶器液压非正弦振动为连铸生产提供了可靠的保证, 它是高效连铸的关键技术之一。
在提高连铸拉速的生产实践过程中, 围绕着结晶器冷却制度、结晶器液位控制和板坯鼓肚控制等方面进行大量的技术研究, 并取得较好的效果。本文针对高拉速浇注阶段结晶器保护渣消耗量偏低的情况, 在分析现行的结晶器振动工艺参数的基础上现场测试非正弦振动, 以优化结晶器振动制度。
结晶器振动的基本参数为振幅和振频。不难发现, 振频随着拉速的提高呈线性增加;振幅随着拉速的提高也略有增加。振动方式由正弦振动转为非正弦振动, 负滑脱时间会减少, 正滑脱时间增加, 并且不对称率越大, 这个变化趋势越明显。
在相同振动频率及拉速时, 将正弦振动转变成不对称率As为60 % 的非正弦振动, 可提高正滑脱时间占比7.42%;而当不对称率A s为63 %, 这个比例可达到10.16 %。但是, 若A s 太大, 则不能保持足够负滑脱量, 一般地, A s 取值范围为60 %一75 %为宜。因此, 非正弦振动能增加结晶器保护渣消耗量, 从而增加结晶器壁和坯壳
连铸课程作业
之间的润滑, 减小坯壳所受的拉坯阻力, 铸坯表面振痕变浅[2]。
结晶器非正弦振动具有的最佳振动模式特点为:上振速度平缓, 正滑脱相对速度差小, 显著降低了坯壳表面拉应力;正滑脱时间长, 增加了保护渣耗量, 改善了润滑状况;负滑脱时间短, 振痕深度浅, 提高了铸坯表面质量;产生一定负滑脱量, 施加压应力于铸坯表面, 有利于强制脱模和撕裂坯壳愈合[3]。
结晶器液压振动装置和非正弦振动模式已被广泛应用于板坯及方坯连铸机上。采用该技术的直接优点是在低拉速时减小振痕深度,改善铸坯表面质量,而在高拉速时保证有足够的保护渣流入,而避免漏钢的发生。
2.2结晶器在线调宽
结晶器在线调宽技术的运用是为了提高铸机作业率而采用的。采用在线调宽技术后,可以在不停止浇铸,甚至不降低拉速的情况下使结晶器窄面无级移动,改变铸坯宽度到所需尺寸,大大提高了连铸机的生产能力和效率,增加了金属收得率。结晶器位于连铸机辊列之首,主要作用是使钢水在结晶器中形成所需截面形状的初生坯壳,并确保坯壳在出结晶器时有足够的厚度,不会被拉漏,造成漏钢等严重事故。它可以实现在线停机调宽、调锥,宽边软夹紧等功能[4]。
在线不停机调宽法应用初始,需根据不同的调宽速度,降低拉坯速度。如调宽速度为3mm /min,须将原拉坯速度1.2m /min 降低到0.7m /min~0.8m /min,即降低33%~41%。随着连铸技术的不断发展,现在的在线调宽无须降低拉速。在线不停机调宽常用方法有两种;一是电动调宽、一是液压缸及脉冲马达调宽。后一种调宽方式调节精度高,但刚性较差,设备维修技术要求高,电动调宽方式刚性好,但停止精度不如液压缸的好,须消除丝杆与螺母之间的间隙[5]。结晶器调宽是靠调节窄边之间的距离来实现的, 由于正常时结晶器的宽边是夹紧的, 窄边无法移动。当需要调宽的时候, 使用液压缸克服弹簧力松开宽边, 此时窄边可以在4台电机的驱动下改变, 产生需要的宽度和锥度。
2.3结晶器电磁制动
连铸拉速的提高, 结晶器内浸入式水口钢液出流的动能也在不断增大, 对结晶器窄面凝壳的冲击加剧, 增大了拉漏的危险。钢液中夹带的气泡和非金属夹杂物也因浸人深度的增加不易上浮和去除。同时, 钢液上返流还引起结晶器内钢液弯月面的波动加剧, 因卷渣而造成的铸坯表面缺陷大大增加。
在板坯连铸结晶器中应用电磁制动技术可以改善结晶器内钢液的流动, 稳定弯月面的波动,降低钢液的冲击深度, 减少结晶器保护渣的卷渣, 有利于结晶器内夹杂物的去除, 从而保证结晶器内钢液的洁净度, 提高铸坯质量, 降低铸坯裂纹缺陷发生的几率;同时也有利于拉坯速度的提高, 提高铸机的作业率。[6]电磁制动技术在新兴的薄板坯连铸生产中, 也正发挥着积极的作用。大量的研究结果表明甚至当提高拉速时, 电磁制动也是改善和保证铸坯清洁度的有效方法。电
连铸课程作业
磁制动特性取决于板坯宽度、拉坯速度、氩气流速和浸入式水口形状等浇铸参数, 因此最佳的电磁制动性能是谨慎选择浇铸条件。今后的电磁制动技术发展方向应是应用电磁制动达到高的产品质量的优化技术。
电磁制动技术就是在板坯结晶器宽面浸入式水口区域设置与从水口流出的钢液流动方向垂直的直流磁场, 当钢液流出水口时就会切割磁力线, 根据欧姆定律可知, 在钢液中将产生感生电流, 感生电流与直流磁场的交互作用又在钢液中产生与流动方向相反的洛仑兹力,从而使钢液的流动受到控制[7]。通过对钢液流场的控制可改善操作工艺和铸坯质量。
采用电磁制动后, 结晶器液面波动幅度明显降低,钢中非金属夹杂物数量较少且尺寸较小, 取得了提高拉速, 改变铸坯表面质量的良好效果。
2.4动态轻压下
动态轻压下是当前国际上正在大力发展的连铸新技术, 通过在线跟踪铸坯热状态, 并根据实际凝固末端位置, 对铸坯实施合适的压下量以阻碍富集偏析元素的定向流动, 减轻或消除中心偏析, 同时抵消铸坯凝固末端的体积收缩量, 避免中心缩孔和中心疏松的形成。
在铸坯凝固的过程中,凝固末端糊状区枝晶间富集偏析元素钢液流到铸坯中心区域会造成中心偏析,而当钢液凝固时发生体积收缩而得不到钢液的及时补充时便形成中心疏松。中心偏析和中心疏松等缺陷的出现与钢种、钢水过热度、拉速、冷却等因素密切相关。动态二冷配水和动态轻压下是减少或消除铸坯的中心偏析与疏松缺陷、提升铸坯质量、提高连铸生产效率的有效途径[8]。该项技术通过控制模型能够根据实际浇注条件的变化,一方面动态地控制二冷区水量以优化铸坯凝固过程温度场,另一方面同时动态地跟踪铸坯凝固末端位置并给铸坯实施轻微压下,以补偿富集偏析元素钢液凝固时的体积收缩,防止该处钢液的流动,有效地减少或消除了铸坯的中心偏析与疏松等缺陷。
轻压下技术成功应用的关键是确定合理的轻压下工艺(包括压下位置、压下量、压下率、压下速率等)[9]。继续开展连铸动态轻压下技术的应用研究,对比研究不同连铸工艺条件下轻压下参数对铸坯质量以及型材质量、性能的影响,确定出大方坯连铸典型钢种的最佳轻压下工艺制度。
2.5动态二冷控制
连铸高效化推动着钢铁工业的结构优化, 而铸机的高作业率和铸坯的高质量都与钢液的凝固过程密切相关, 连铸二次冷却就是对出结晶器的铸坯继续进行强化冷却。通过改善二次冷却制度, 优化二次冷却配水, 可实现铸坯的冷却均匀。同时二冷制度合理与否, 对于连铸动态轻压下工艺的实施以及铸坯最终质量是至关重要的。
二冷水量控制的好坏将直接关系到铸坯冷却凝固速度和拉坯速度, 从而影
连铸课程作业
响到连铸机的生产能力。同时, 二冷水量控制还影响铸坯质量, 如果冷却水量分配不合理, 铸坯表面温度就不能稳定均匀地变化, 从而将引起铸坯内部裂纹、表面裂纹、鼓肚和中心偏析等质量缺陷。
动态二冷区控制研究主要采用建模的方法。由于连铸二冷区高温多湿, 铸坯表面有冷却水形成的水膜和氧化铁皮, 周围又有二冷水汽化后形成的雾状蒸汽, 所以很难用高温传感器在此区域内进行准确可靠的测温, 采用在线凝固传热模型对二冷区铸坯的表面温度进行预测已成为一个行之有效的手段。因此, 建立精确的在线凝固传热模型并对铸坯实时温度场进行准确计算已成为实现连铸动态二冷控制的前提条件。
基于在线凝固传热模型、采用抗饱和自适应整定PID 控制算法建立了连铸动态二冷控制模型。模型具有较强的抗干扰能力和控制精度, 能够很好地实现铸机二冷配水的动态控制, 使铸坯二冷水量在瞬态浇铸条件下平缓变化;在正常工作拉速范围内, 铸坯表面温度波动能够控制在±5℃以内。采用动态二冷控制模型后, 铸坯质量有明显提高, 中心疏松小于1.5 级由49.45% 上升到83.46%, 中心缩孔小于1.5 级由63.74%上升到86.75%, 中心裂纹、中间裂纹和角部裂纹低于0.5 级分别由64.80%、92.71%、93.59%上升到90.03%、97.38%、98.45%, 且平均等轴晶率由24.305%上升到32.195%。[10]
3、结束语
连铸运动过程是将钢水转变成固态钢的过程,这一转变伴随着固态钢成型、固态相变、液—固态相变、铜板与铸坯表面的换热以及冷却水与铸坯表面间复杂的换热过程,钢水要经历钢水包→中间包→结晶器→二次冷却→空冷区→切割→铸坯的工序。在整个连铸过程中,钢水会发生相变,铸坯也要经受弯曲、矫直等一些变化。液压非正弦振动、结晶器在线调宽、结晶器电磁制动、动态轻压下、动态二冷控制等连铸新技术的采用,可以防止铸坯在凝固过程中与结晶器的铜管内壁粘结而发生挂拉裂或拉漏事故, 改善结晶器内钢液的流动, 稳定弯月面的波动,降低钢液的冲击深度, 减少结晶器保护渣的卷渣, 有利于结晶器内夹杂物的去除,从而保证铸坯的表面质量, 减轻振痕深度。并保证结晶器内钢液的洁净度, 提高铸坯质量, 降低铸坯裂纹缺陷发生的几率;同时也有利于拉坯速度的提高, 提高铸机的作业率。对铸坯实施合适的压下量以阻碍富集偏析元素的定向流动, 减轻或消除中心偏析, 同时抵消铸坯凝固末端的体积收缩量, 避免中心缩孔和中心疏松的形成。二冷水量控制的好坏将直接关系到铸坯冷却凝固速度和拉坯速度, 从而影响到连铸机的生产能力。同时, 二冷水量控制还影响铸坯质量, 如果冷却水量分配不合理, 铸坯表面温度就不能稳定均匀地变化, 从而将引起铸坯内部裂纹、表面裂纹、鼓肚和中心偏析等质量缺陷。通过改善二次冷却制度, 优化二次冷却配水, 可实现铸坯的冷却均匀。
高效连铸不仅提高了连铸机的生产率和产量,而且进一步改善了铸坯质量, 对钢铁工业的发展起到了非常重要的作用。液压非正弦振动、结晶器在线调宽、连铸课程作业
结晶器电磁制动、动态轻压下、动态二冷控制等连铸新技术的开发和应用取得显著成效,促进了高效连铸的不断推广。但高效连铸是一个系统的工程,综合应用各连铸新技术,同时不断开发和创新,才能促进高效连铸的进一步发展。
参考文献:
[1]幸伟,袁德玉.高效连铸的发展状况及新技术[J].连铸,2011,01:1-4.[2]曾智,庞在刚.板坯连铸结晶器非正弦振动的研究[A].中国金属学会炼钢分会.第十七届(2013年)全国炼钢学术会议论文集(A卷)[C].中国金属学会炼钢分会:,2013:5.[3]孟祥宁,朱苗勇.高拉速连铸结晶器非正弦振动因子研究[J].金属学报,2007,02:205-210.[4]俞涛.板坯连铸机结晶器在线调宽技术[J].科技风,2010,17:133-134.[5]张树存.在线调宽装置在板坯连铸机结晶器上的应用[J].冶金设备,2006,01:30-32.[6]陈芝会,王恩刚,赫冀成.板坯连铸结晶器电磁制动技术及其应用[J].炼钢,2004,03:48-52.[7]金百刚,王军.结晶器电磁制动技术的应用研究[J].冶金设备,2011,01:39-42.[8]王国新,张家泉.大方坯连铸动态二冷与动态轻压下控制模型的开发与应用[J].系统仿真学报,2009,08:2453-2456+2467.[9]杨素波,陈永,李桂军.大方坯连铸动态轻压下技术应用研究[J].钢铁,2005,06:24-26.[10]杨跃标,祭程.连铸动态二冷控制模型的开发与应用[J].钢铁,2010,09:48-52.
