最新《计量经济学综合实验》实验报告
《计量经济学综合实验》实验报告 计量经济学综合实验 实验一 第二章第 6 题 Dependent Variable: Y Method: Least Squares Date: 12/17/13 Time: 09:13 Sample: 1985 1998 Included observations: 14 Variable Coefficie Std.Error t-Statistic Prob.nt C 12596.27 1244.567 10.12101 0.0000 GDP 26.95415 4.120300 6.541792 0.0000 R-squared 0.781002 Mean dependent var 20168.57 Adjusted R-squared 0.762752 S.D.dependent var 3512.487 S.E.of regression 1710.865 Akaike info criterion 17.85895 Sum squared resid 35124719 Schwarz criterion 17.95024 Log likelihood-123.0126 F-statistic 42.79505 Durbin-Watson stat 0.859998 Prob(F-statistic)0.000028(1)t t te GDP Y 95.26 27.12596(10.12)(6.54)78.02 R(2)95.261 是样本回归方程的斜率,它表示 GDP 每增加 1 亿元,货物运输量将增加 26.95 万吨,27.12596ˆ 0 是样本回归方程的截距,表示 GDP 不变价时的货物运输量。
(3)78.02 R,说明离差平方和的 78%被样本回归直线解释,还有22%未被解释。因此,样本回归至西安对样本点的拟合优度是较高的。
给出显著水平05.0 ,查自由度 v=14-2=12 的 t 分布表,得临界值 18.2)12(025.0 t,)12(12.10025.0 0t t ,)12(54.6025.0 1t t ,故回归系数均显著不为零,回归模型中英包含常数项,X 对 Y 有显著影响。
(4)2000年的国内生产总值为620亿元,货物运输量预测值为29307.84万吨。
实验二 第二章第 7 题 X1 Dependent Variable: Q Method: Least Squares Date: 12/17/13 Time: 10:57 Sample: 1978 1998
Included observations: 21 Variable Coefficient Std.Error t-Statistic Prob.C 40772.47 1389.795 29.33704 0.0000 X1 0.001220 0.001909 0.639194 0.5303 R-squared 0.021051 Mean dependent var 40996.12 Adjusted R-squared-0.030473 S.D.dependent var 6071.868 S.E.of regression 6163.687 Akaike info criterion 20.38113 Sum squared resid 7.22E+08 Schwarz criterion 20.48061 Log likelihood-212.0019 F-statistic 0.408568 Durbin-Watson stat 0.206201 Prob(F-statistic)0.530328 tQ =40772.47+0.001tX 1 +te X2 Dependent Variable: Q Method: Least Squares
Date: 12/17/13 Time: 10:58 Sample: 1978 1998 Included observations: 21 Variable Coefficient Std.Error t-Statistic Prob.C 26925.65 915.8657 29.39912 0.0000 X2 5.912534 0.356423 16.58851 0.0000 R-squared 0.935413 Mean dependent var 40996.12 Adjusted R-squared 0.932014 S.D.dependent var 6071.868 S.E.of regression 1583.185 Akaike info criterion 17.66266 Sum squared resid 47623035 Schwarz criterion 17.76214 Log likelihood-183.4579 F-statistic 275.1787 Durbin-Watson stat 1.264400 Prob(F-statistic)0.000000 tQ =26925.65+5.91tX2 + te X3
Dependent Variable: Q Method: Least Squares Date: 12/17/13 Time: 10:58 Sample: 1978 1998 Included observations: 21 Variable Coefficient Std.Error t-Statistic Prob.C-49865.39 12638.40-3.945545 0.0009 X3 1.948700 0.270634 7.200498 0.0000 R-squared 0.731817 Mean dependent var 40996.12 Adjusted R-squared 0.717702 S.D.dependent var 6071.868 S.E.of regression 3226.087 Akaike info criterion 19.08632 Sum squared resid 1.98E+08 Schwarz criterion 19.18580 Log likelihood-198.4064 F-statistic 51.84718 Durbin-Watson stat 0.304603 Prob(F-statistic)0.000001
tQ =-49865.39+1.95tX3+te(1)t t te X Q 1 1 0ˆ ˆ tQ =40772.47+0.001tX 1 +te t t te X Q 2 1 0ˆ ˆ tQ =26925.65+5.91tX2 + te t t te X Q 3 1 0ˆ ˆ tQ =-49865.39+1.95tX3+te(2)=0.001 为样本回归方程的斜率,表示边际农业机械总动力,说明农业机械总动力每增加 1 万千瓦,粮食产量增加 1 万吨。=40072.47 是截距,表示不受农业机械总动力影响的粮食产量。=0.02,说明总离差平方和的 2%被样本回归直线解释,有 98%未被解释,因此样本回归直线对样本点的拟合优度是很低的。给出的显著水平 =0.05,查自由度 v=21-2=19 的 t 分布表,得临界值09.2)19(025.0 t, 34.290t)19(025.0t,64.00 t<)19(025.0t,=5.91 为样本回归方程的斜率,表示边际化肥施用量,说明化肥使用量每增加 1 万吨,粮食产量增加 1 万吨。
=26925.65 是截距,表示不受化肥使用量影响的粮食产量。
=0.94,说明总离差平方和的 94%被样本回归直线解释,有 6%未被解释,因此样本回归直线对样本点的拟合优度是很高的。给出的显著水平 =0.05,查自由度 v=21-2=19 的 t 分布表,得临界值09.2)19(025.0 t,0t29.40>)19(025.0t,=16.6>,故回归系数均不为零,回归模型中应包含
常数项,X 对 Y 有显著影响。
=1.95 为样本回归方程的斜率,表示边际土地灌溉面积,说明土地灌溉面积每增加 1 千公顷,粮食产量增加 1 万吨。
=-49865.39是截距,表示不受土地灌溉面积影响的粮食产量。
=0.73,说明总离差平方和的 73%被样本回归直线解释,有 27%未被解释,因此样本回归直线对样本点的拟合优度是较高的。给出显著性水平=0.05,查自由度 =21-2=19 的 t 分布表,得临界值 =2.09,=-3.95<,=7.2>,故回归系数包含零,回归模型中不应包含常数项,X 对 Y 有无显著影响。
(3)根据分析,X2 得拟合优度最高,模型最好,所以选择 X2 得预测值。
tQ =26925.65+5.91tX2 + te 54.52349ˆ 2000 Q
实验三 P85 第 3 题 Dependent Variable: Y Method: Least Squares Date: 12/19/13 Time: 09:10 Sample: 1 18 Included observations: 18 Variable Coefficient Std.Error t-Statistic Prob.C-0.975568 30.32236-0.032173 0.9748 X1 104.3146 6.409136 16.27592 0.0000 X2 0.402190 0.116348 3.456776 0.0035 R-squared 0.979727 Mean dependent var 755.1500 Adjusted R-squared 0.977023 S.D.dependent var 258.6859 S.E.of regression 39.21162 Akaike info criterion 10.32684 Sum squared resid 23063.27 Schwarz criterion 10.47523
Log likelihood-89.94152 F-statistic 362.4430 Durbin-Watson stat 2.561395 Prob(F-statistic)0.000000(1)2 140.0 32.104 98.0ˆX X Y (2)提出检验的原假设为 2 , 1 , 00 i Hi。
给出显著水平05.0 ,查自由度 v=18-2=16 的 t 分布表,得临界值 13.2)15(025.0 t。
28.161t)15(025.0t,所以否定0H ,1 显著不等于零,即可以认为受教育年限对购买书籍及课外读物支出有显著影响。
46.32t)15(025.0t,所以否定0H,2 显著不等于零,即可以家庭月可支配收入对购买书籍及课外读物支出有显著影响。
(3)9797.0 12 TSSRSSTSSESSR 9770.0)1 /()1 /(12 n TSSk n RSSR 2R =0.9797,表示 Y 中的变异性能被估计的回归方程解释的部分越多,估计的回归方程对样本观测值就拟合的越好。同样,2R =0.9770,很接近1,表示模型拟合度很好。
(4)把1X =10,2X =480 代入2 140.0 32.104 98.0ˆX X Y 22.1234 480 * 40.0 10 * 32.104 98.0ˆ 2000 Y 实验四 P86 第 6 题 Dependent Variable: Y
Method: Least Squares Date: 12/19/13 Time: 10:14 Sample: 1955 1984 Included observations: 30 Variable Coefficient Std.Error t-Statistic Prob.C 0.208932 4.372218 0.047786 0.9623 X1 1.081407 0.234139 4.618649 0.0001 X2 3.646565 1.699849 2.145229 0.0414 X3 0.004212 0.011664 0.361071 0.7210 R-squared 0.552290 Mean dependent var 22.13467 Adjusted R-squared 0.500632 S.D.dependent var 14.47115 S.E.of regression 10.22618 Akaike info criterion 7.611345 Sum squared resid 2718.944 Schwarz criterion 7.798171 Log likelihood-110.1702 F-statistic 10.69112 Durbin-Watson stat 1.250501 Prob(F-statistic)0.000093
3 2 10042.0 6466.3 0814.1 2089.0ˆX X X Y 0814.11 ,表示该地区某农产品收购量随着销售量的增加而增加,=3.647 表示农产品收购量随出口量的增加而增加。
=3.647 表示农产品收购量随库存量的增加而增加。该回归方程系数的符号和大小均符合经济理论和实际情况。
统计检验 a.回归方程的显著性检验 F 检验:r =0.55 表示 和 和 联合起来对 Y 的解释能力达到55,因此,样本回归方程的拟合优度是高的。显著性水平=0.05,查自由度 v=30-3-1=27,的 F 分布表的临界值05.0F(3,27)=2.96,F=10.69>F(3,27)=2.96,说明回归方程在总体上是显著的。
b.回归系数的显著性检验 t 检验:显著性水平=0.05,查自由度 v=30-3-1=26 的 t 分布表的临界值 t(26)=2.06,t =4.62>t(26),所以 显著不为零,即销售量对农产品收购量有显著影响;t =2.15 >t(26),所以显著不为零,即出口量对农产品收购量有显著影响;t =0.36 5523.02 TSSESSR,表示 Y 中的变异性能被估计的回归方程解释的部分越多,估计的回归方程对样本观测值就拟合的越好。同样,2R =0.5006,表示模型拟合度一般。 实验五 P107 第四章第 1 题 Dependent Variable: LOGY Method: Least Squares Date: 12/19/13 Time: 12:07 Sample: 1990 1998 Included observations: 9 Variable Coefficient Std.Error t-Statistic Prob.C 1.130931 0.019529 57.91136 0.0000 T 0.281837 0.003470 81.21339 0.0000 R-squared 0.998940 Mean dependent var 2.540117 Adjusted R-squared 0.998788 S.D.dependent var 0.772253 S.E.of regression 0.026881 Akaike info criterion-4.201659 Sum squared resid 0.005058 Schwarz criterion-4.157831 Log likelihood 20.90746 F-statistic 6595.614 Durbin-Watson stat 1.128588 Prob(F-statistic)0.000000 Lny=1.13+0.28t+te(57.91)(81.21)结构分析 : =0.28 表示 1990 年到 1998 年期间,皮鞋销售额的年增长率为 28%。给出显著性水平=0.05,查自由度 =30-4=26 的 t 分布表,得临界值 =2.37,=57.91>,=81.21>故显著不为零,则回归模型中应包含常数项,可以认为时间对销售额有显著影响,, ,表示Y 能对估计的回归方程进行很高解释,所以估计的回归方程对样本观测值就拟合的程度很高 T=10,Lny=3.949 y=49.4024 则预测得该商场 1999 年的皮鞋销售额为 49.4024 万元 实验六 P107 第四章第 2 题 Dependent Variable: LOGY Method: Least Squares Date: 12/20/13 Time: 15:08 Sample: 1 21 Included observations: 21 Variable Coefficie Std.Error t-Statistic Prob.nt C-35.40425 1.637922-21.61535 0.0000 T 0.020766 0.000866 23.97401 0.0000 R-squared 0.968000 Mean dependent var 3.843167 Adjusted R-squared 0.966316 S.D.dependent var 1.309610 S.E.of regression 0.240355 Akaike info criterion 0.076997 Sum squared resid 1.097644 Schwarz criterion 0.176475 Log likelihood 1.191533 F-statistic 574.7531 Durbin-Watson stat 0.110127 Prob(F-statistic)0.000000 LnY=-35.4042+0.02081X +1u Lnyf=6.127 Y=458.0599 实验七 P108 第四章第 3 题 Dependent Variable: LNM Method: Least Squares Date: 12/20/13 Time: 16:35 Sample: 1948 1964 Included observations: 17 Variable Coefficient Std.Error t-Statistic Prob.LNP 1.265879 0.431393 2.934402 0.0116 LNR 0.864595 0.517228 1.671593 0.1185 LNY 0.206210 0.308720 0.667952 0.5158 C-2.095090 1.790906-1.169850 0.2631 R-squared 0.859355 Mean dependent var 5.481567 Adjusted R-squared 0.826899 S.D.dependent var 0.269308 S.E.of regression 0.112047 Akaike info criterion-1.337475 Sum squared resid 0.163208 Schwarz criterion-1.141425 Log likelihood 15.36854 F-statistic 26.47717 Durbin-Watson stat 0.743910 Prob(F-statistic)0.000008 lnt t tntY r P M 2062.0 ln 8646.0 ln 2659.1 0951.2)( (-1.1699)(2.9344)(1.6716)(0.6680)085942 R 8269.02 R(2)t 检验: 假设0H : 0 i,显著性水平=0.05,查自由度 v=17-3-1=13 的t 分布表的临界值 t(13)=2.16,t =2.9344>t(13),所以1ˆ 显著不为零,即内含价格缩减指数对名义货币存量有显著影响;2t =1.6716 F 检验: 假设0H : 03 2 1 1H :至少有一个i 不等于零(i=1,2,3)r =0.86 表示3 2 1 和 和 联合起来对)(ntM 的解释能力达到 86,因此,样本回归方程的拟合优度是很高的。显著性水平=0.05,查自由度 v=17-3-1=13,的 F 分布表的临界值05.0F(3,13)=3.41,F=26.4772>F(3,13)=3.41,所以否定0H,说明回归方程在总体上是显著的。即内含价格缩减指数,名义国名收入和长期利率与名义货币存量之间的关系是线性的。 经济意义分析: 0 1.2659 表示内含价格缩减指数每增加 1%,名义货币存量就增加 1.2659%,1 0.2062 表示名义国民收入每增加 1 亿,名义货币存量就增加 0.2062 亿,2 0.8646 表示长期利率每增加 1%,名义货币存量就增加 0.8646%。 (3)Dependent Variable: LNM Method: Least Squares Date: 12/20/13 Time: 16:41 Sample: 1948 1964 Included observations: 17 Variable Coefficient Std.Error t-Statistic Prob.LNR 0.944253 0.489602 1.928614 0.0743 LNY 0.226585 0.300069 0.755110 0.4627 C-1.006527 0.289766-3.473584 0.0037 R-squared 0.751490 Mean dependent var 0.802225 Adjusted R-squared 0.715989 S.D.dependent var 0.205539 S.E.of regression 0.109537 Akaike info criterion-1.426321 Sum squared resid 0.167977 Schwarz criterion-1.279283 Log likelihood 15.12373 F-statistic 21.16793 Durbin-Watson stat 0.656255 Prob(F-statistic)0.000059 lnt t tY r M 2266.0 ln 9443.0 0065.1 (-3.4736)(1.9286)(0.7551)t 检验: 假设0H : 0 i,显著性水平=0.05,查自由度 v=17-2-1=14 的t 分布表的临界值 t(14)=2.15,rt =1.9286 F 检验: 假设0H : 02 1 1H :至少有一个i 不等于零(i=1,2,3)r =0.75 表示2 1 和 联合起来对tM 的解释能力达到 75,因此,样本回归方程的拟合优度是很高的。显著性水平=0.05,查自由度v=17-2-1=14,的 F 分 布 表 的 临 界 值05.0F(3,14)=3.34,F=21.1679>F(3,14)=3.34,所以否定0H,说明回归方程在总体上是显著的。即名义国名收入和长期利率与名义货币存量之间的关系是线性的。 经济意义分析: 1 0.9443 表示长期利率每增加 1%,名义货币存量就增加0.9443%,2 0.2266 表示名义国民收入每增加 1 亿,名义货币存量就增加 0.2266%。 (4)Dependent Variable: LNM Method: Least Squares Date: 12/20/13 Time: 16:51 Sample: 1948 1964 Included observations: 17 Variable Coefficient Std.Error t-Statistic Prob.LNR-0.209411 0.232757-0.899696 0.3825 C-1.287677 0.314926-4.088823 0.0010 R-squared 0.051201 Mean dependent var-1.569623 Adjusted R-squared-0.012053 S.D.dependent var 0.127733 S.E.of regression 0.128501 Akaike info criterion-1.155637 Sum squared resid 0.247686 Schwarz criterion-1.057611 Log likelihood 11.82291 F-statistic 0.809453 Durbin-Watson stat 1.474376 Prob(F-statistic)0.382499 lnt tr M ln 2094.0 2877.1 (-4.0888)(-0.8997) t 检验: 假设0H : 0 i,显著性水平=0.05,查自由度 v=17-1-1=15 的t 分布表的临界值 t(15)=2.13,rt =-0.8997 F 检验: 假设0H : 0 1H : 0 r =0.05,因此,样本回归方程的拟合优度是很低的。显著性水平=0.05,查自由度 v=17-1-1=15,的 F 分布表的临界值05.0F(3,15)=3.29,F=0.8095 经济意义分析: -0.2094 表示长期利率每增加 1%,名义货币存量就减少0.2094%。 实验八 P133 第五章第 2 题 Dependent Variable: Y Method: Least Squares Date: 12/24/13 Time: 09:44 Sample: 1 29 Included observations: 29 Variable Coefficient Std.Error t-Statistic Prob.C 58.31791 49.04935 1.188964 0.2448 X 0.795570 0.018373 43.30193 0.0000 R-squared 0.985805 Mean dependent var 2111.931 Adjusted R-squared 0.985279 S.D.dependent var 555.5470 S.E.of regression 67.40436 Akaike info criterion 11.32577 Sum squared resid 122670.4 Schwarz criterion 11.42006 Log likelihood-162.2236 F-statistic 1875.057 Durbin-Watson stat 1.893970 Prob(F-statistic)0.000000 i iu X Y 1 1 0 i iu X Y 17956.0 3179.58(1.18)(43.3)=0.9852 F=1875.057(1)斯皮尔曼等级相关系数检验 X x 的等级 残差 残差的等 等级差 等级差的级平方 3547 26 59.79523 20-6 36 2769 21 60.7487 21 0 0 2334 14 17.17834 7-7 49 1957 4 55.24844 18 14 196 1893 1 20.66804 8 7 49 2314 13 77.73306 22 9 81 1953 3 16.06616 4 1 1 1960 5 42.36485 14 9 81 4297 28 53.11771 17-11 121 2774 22 45.77085 15-7 49 3626 27 87.05481 23-4 16 2248 11 0.759316 1-10 100 2839 23 24.0588 10-13 169 1919 2 8.016779 2 0 0 2515 18 112.1765 27 9 81 1963 6 11.02186 3-3 9 2450 17 40.53554 13-4 16 2688 20 109.8101 26 6 36 4632 29 33.60175 12-17 289 2895 24 58.49312 19-5 25 3072 25 98.30901 25 0 0 2421 15 49.60707 16 1 1 2313 12 22.47137 9-3 9 2653 19 17.03482 6-13 169 2102 8 16.60609 5-3 9 2003 7 28.15534 11 4 16 2127 9 119.5047 28 19 361 2171 10 91.49958 24 14 196 2423 16 150.9841 29 13 169 等级差平方和 2334 R=1-43.0 57.0 12436014004129 292334 * 63 假设0H : 0 1H : 0 r~N(0,11 N)=N(0,281)Z=281r=0.43*5.2915=2.275345 给定显著性水平05.0 ,查正太分布表,得 96.12Z,因为Z=2.275345>1.96,所以拒绝原假设0H ,接受1H,即等级相关系数是显著的,说明城镇居民人均生活费模型的随机误差存在异方差。 (2)图示法 Y 对 X 的散点图 残差与 X 的散点图(3)Dependent Variable: Y Method: Least Squares Date: 12/26/13 Time: 10:32 Sample: 1 29 Included observations: 29 Variable Coefficient Std.Error t-Statistic Prob.C 58.31791 49.04935 1.188964 0.2448 X 0.795570 0.018373 43.30193 0.0000 R-squared 0.985805 Mean dependent var 2111.931 Adjusted R-squared 0.985279 S.D.dependent var 555.5470 S.E.of regression 67.40436 Akaike info criterion 11.32577 Sum squared resid 122670.4 Schwarz criterion 11.42006 Log likelihood-162.2236 F-statistic 1875.057 Durbin-Watson stat 1.893970 Prob(F-statistic)0.000000 White 检验 White Heteroskedasticity Test: F-statistic 1.368420 Probability 0.27223 7 Obs*R-squared 2.761902 Probability 0.251339 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/26/13 Time: 10:34 Sample: 1 29 Included observations: 29 Variable Coefficient Std.Error t-Statistic Prob.C-22151.26 16006.57-1.383885 0.1782 X 18.11067 10.95898 1.652586 0.1104 X^2-0.002858 0.001756-1.627322 0.1157 R-squared 0.095238 Mean dependent var 4230.013 Adjusted R-squared 0.025641 S.D.dependent var 5479.442 S.E.of regression 5408.737 Akaike info 20.1271 criterion 2 Sum squared resid 7.61E+08 Schwarz criterion 20.26856 Log likelihood-288.8432 F-statistic 1.368420 Durbin-Watson stat 1.209956 Prob(F-statistic)0.272237 220029.0 1107.18 26.22151 ˆt t tX X u (-1.3839)(1.6526)(-1.6273)0952.02 R T=29 76196.2 0952.0 * 292 TR <0.6)2(205.0 所以该回归模型不存在异方差。 (4)戈德菲尔德-夸特检验 第一个样本输出 Dependent Variable: Y Method: Least Squares Date: 12/26/13 Time: 10:49 Sample: 1 11 Included observations: 11 Variable Coefficient Std.Error t-Statistic Prob.C-287.1872 271.8586-1.056384 0.3183 X 0.974751 0.133926 7.278296 0.0000 R-squared 0.854777 Mean dependent var 1688.545 Adjusted R-squared 0.838641 S.D.dependent var 122.2083 S.E.of regression 49.09050 Akaike info criterion 10.78817 Sum squared resid 21688.89 Schwarz criterion 10.86052 Log likelihood-57.33496 F-statistic 52.97359 Durbin-Watson stat 2.306656 Prob(F-statistic)0.000047 X Y 9748.0 19.287ˆ 残差平方和=21688.89 第二个样本输出 Dependent Variable: Y Method: Least Squares Date: 12/26/13 Time: 10:50 Sample: 19 29 Included observations: 11 Variable Coefficient Std.Error t-Statistic Prob.C-27.68345 106.7596-0.259306 0.8012 X 0.820337 0.032169 25.50095 0.0000 R-squared 0.986349 Mean dependent var 2641.545 Adjusted R-squared 0.984832 S.D.dependent var 565.8140 S.E.of regression 69.68393 Akaike info criterion 11.48878 Sum squared resid 43702.65 Schwarz criterion 11.56113 Log likelihood-61.18830 F-statistic 650.2986 Durbin-Watson stat 2.610584 Prob(F-statistic)0.000000 X Y 8203.0 6835.27ˆ 残差平方和=43702.65 提出原假设,0H :2292221... 备择假设,1H :2292221... 、互不相同。 构造 F 统计量 015.289.2168865.43702 F 给出显著性水平 =0.05,查 F 分布表 2-11 v v2 1 =9,18.3)9 , 9(05.0 F,因为 F=2.015<3.18,所以接受原假设,即城镇居民人均生活费计量模型的随机误差不存在异方差。 实验九 P158 第六章第 3 题 Dependent Variable: Y Method: Least Squares Date: 12/26/13 Time: 11:43 Sample: 1975 1994 Included observations: 20 Variable Coefficient Std.Error t-Statistic Prob.C-1.454750 0.214146-6.793261 0.0000 X 0.176283 0.001445 122.0170 0.0000 R-squared 0.998792 Mean dependent var 24.56900 Adjusted R-squared 0.998725 S.D.dependent var 2.410396 S.E.of regression 0.086056 Akaike info criterion-1.972991 Sum squared resid 0.133302 Schwarz criterion-1.873418 Log likelihood 21.72991 F-statistic 14888.14 Durbin-Watson stat 0.734726 Prob(F-statistic)0.000000(1)线性回归模型 tX Y 176.0 455.1ˆ (-6.7933)(122.0170)998.02 R s.e=0.086 DW=0.7347 T=20 所以回归方程拟合效果较好,但是 DW 值比较低。 (2)残差图 LM 检验 Breusch-Godfrey Serial Correlation LM Test: F-statistic 11.32914 Probability 0.003669 Obs*R-squared 7.998223 Probability 0.004682 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 12/06/13 Time: 16:38 Presample missing value lagged residuals set to zero.Variable Coefficient Std.Error t-Statistic Prob.C 0.060923 0.171655 0.354917 0.7270 X-0.000420 0.001158-0.362439 0.7215 RESID(-1)0.638831 0.189796 3.365879 0.0037 R-squared 0.399911 Mean dependent var-8.51E-16 Adjusted R-squared 0.329312 S.D.dependent var 0.083761 S.E.of regression 0.068597 Akaike info criterion-2.383669 Sum squared resid 0.079993 Schwarz criterion-2.234309 Log likelihood 26.83669 F-statistic 5.664570 Durbin-Watson stat 1.738830 Prob(F-statistic)0.013027 Obs*R-squared 7.998223 LM(BG)自相关检验辅助回归式估计结果是 =20*0.399911=7.998223 DW=1.7388 因为)1(201.0 =6.635 假设 0...2 1 0 nH : :1H 至少一个n 不等于 0。 9982.72 TR LM , 与)1(201.0 相 比,)1(201.0 =6.635,2TR LM >)1(201.0 =6.635,所以拒绝0H,接受1H,所以该误差项存在一阶自相关。 (4)已知 DW=0.7347,若给定 05.0 ,查表得 DW 检验临界值20.1 Ld,41.1 Ud。因为 DW=0.7347<1.20,依据判别规则,认为 误 差 项tu 存 在 严 重 的 自 相 关。 估 计 得 自 相 关 系 数63265.021 ˆ DW。 对原变量做广义差分变换。令 163265.0 t t tY Y GDY 163265.0 t t tX X GDX 以tGDY、tGDX,(1976~1994 年)为样本再次回归,得 Dependent Variable: Y1 Method: Least Squares Date: 12/06/13 Time: 16:09 Sample(adjusted): 1976 1994 Included observations: 19 after adjusting endpoints Variable Coefficient Std.Error t-Statistic Prob.C-0.391467 0.167101-2.342704 0.0316 X1 0.173740 0.002966 58.57989 0.0000 R-squared 0.995070 Mean dependent var 9.355585 Adjusted R-squared 0.994780 S.D.dependent var 0.929364 S.E.of regression 0.067143 Akaike info criterion-2.464684 Sum squared resid 0.076639 Schwarz criterion-2.365269 Log likelihood 25.41450 F-statistic 3431.603 Durbin-Watson stat 1.651928 Prob(F-statistic)0.000000 t tGDX GDY 174.0 39.0 (-2.34)(58.58))(,,1994 ~ 1976 19 652.1 067.0 e.s 995.02 T DW R DW=1.65,查临界值表,若给定 05.0 ,查表得 DW 检验临界值18.1 Ld,40.1 Ud。因为 DW=1.65>1.18,依据判别规则,认为误差项tu 不存在自相关。残差图如下: 残差图 0657.1)63265.0 1 /(3915.0)1 /(*0 0 t tX Y 174.0 0657.1ˆ 经济含义是该公司的年销售额占该行业的年销售额的 17.4%。 实验十 P159 第六章第 4 题 Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 08:41 Sample: 1960 2001 Included observations: 42 Variable Coefficie Std.Error t-Statistic Prob.nt C-3028.563 655.4268-4.620749 0.0000 GDP 0.697492 0.019060 36.59467 0.0000 R-squared 0.970997 Mean dependent var 10765.23 Adjusted R-squared 0.970272 S.D.dependent var 20154.12 S.E.of regression 3474.938 Akaike info criterion 19.19099 Sum squared resid 4.83E+08 Schwarz criterion 19.27373 Log likelihood-401.0108 F-statistic 1339.170 Durbin-Watson stat 0.178439 Prob(F-statistic)0.000000(1)线性回归模型 tGDP Y 6975.0 56.3028ˆ (-4.6207)(36.5947)97.02 R s.e=3474.94 DW=0.1784 T=42 所以回归方程拟合效果较好,但是 DW 值比较低。 (2)LM 检验: Breusch-Godfrey Serial Correlation LM Test: F-statistic 327.3780 Probability 0.000000 Obs*R-squared 37.52921 Probability 0.000000 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 12/09/13 Time: 08:51 Presample missing value lagged residuals set to zero.Variable Coefficient Std.Error t-Statistic Prob.C-425.8114 217.8406-1.954693 0.0578 GDP 0.034728 0.006584 5.274762 0.0000 RESID(-1)1.109597 0.061325 18.09359 0.0000 R-squared 0.893553 Mean dependent var-3.29E-12 Adjusted R-squared 0.888094 S.D.dependent var 3432.299 S.E.of regression 1148.186 Akaike info criterion 16.99850 Sum squared resid 51414932 Schwarz criterion 17.12262 Log likelihood-353.9686 F-statistic 163.6890 Durbin-Watson stat 1.408348 Prob(F-statistic)0.000000 假设 0...2 1 0 nH : :1H 至少一个n 不等于 0。 5292.372 TR LM , 与)1(201.0 相 比,)1(201.0 =6.635,2TR LM >)1(201.0 =6.635,所以拒绝0H,接受1H,所以该误差项存在一阶自相关。 (4)已知 DW=0.1784,若给定 05.0 ,查表得 DW 检验临界值46.1 Ld,55.1 Ud。因为 DW=0.7347<1.46,依据判别规则,认为误差项tu 存在严重的自相关。估计得自相关系数 9108.021 ˆ DW。 对原变量做广义差分变换。令 1 19108.0 t tY Y Y 1 19108.0 t tGDP GDP GDP 以1Y、tGDP,(1961~2001 年)为样本再次回归,得 Dependent Variable: Y1 Method: Least Squares Date: 12/09/13 Time: 09:23 Sample(adjusted): 1961 2001 Included observations: 41 after adjusting endpoints Variable Coefficient Std.Error t-Statistic Prob.C-421.5539 280.8946-1.500755 0.1415 GDP1 0.779526 0.042995 18.13047 0.0000 R-squared 0.893939 Mean dependent var 2620.667 Adjusted 0.891220 S.D.dependent 4373.39 R-squared var 9 S.E.of regression 1442.428 Akaike info criterion 17.43359 Sum squared resid 81143297 Schwarz criterion 17.51718 Log likelihood-355.3887 F-statistic 328.7140 Durbin-Watson stat 0.836300 Prob(F-statistic)0.000000 t tGDX GDY 7795.0 55.421 (-1.50)(18.13))(,,001 2 ~ 1961 41 8363.0 43.1442 e.s 894.02 T DW R DW=0.8363,查临界值表,若给定 05.0 ,查表得 DW 检验临界值 45.1 Ld,54.1 Ud。因为 DW=0.8363<1.45,依据判别规则,认为误差项tu 存在严重的自相关。残差图如下: 08.513)1784.0 1 /(55.421)1 /(*0 0 t tX Y 7795.0 08.513ˆ 经济含义是中国储蓄存款总额占 GDP 的 77.95% 回归检验 Dependent Variable: E Method: Least Squares Date: 12/09/13 Time: 09:53 Sample(adjusted): 1961 2001 Included observations: 41 after adjusting endpoints Variable Coefficient Std.Error t-Statistic Prob.E(-1)1.009174 0.074755 13.49981 0.0000 R-squared 0.819979 Mean dependent-50.6979 var 8 Adjusted R-squared 0.819979 S.D.dependent var 3458.980 S.E.of regression 1467.608 Akaike info criterion 17.44474 Sum squared resid 86154890 Schwarz criterion 17.48654 Log likelihood-356.6172 Durbin-Watson stat 0.755836 ,给定的,1.68<13.49981,所以存在一阶自相关。 Dependent Variable: E Method: Least Squares Date: 12/09/13 Time: 10:19 Sample(adjusted): 1962 2001 Included observations: 40 after adjusting endpoints Variable Coefficient Std.Error t-Statistic Prob.E(-1)1.649051 0.156003 10.57065 0.0000 E(-2)-0.718464 0.160362-4.480266 0.0001 R-squared 0.880898 Mean dependent var-107.7910 Adjusted R-squared 0.877764 S.D.dependent var 3483.425 S.E.of regression 1217.887 Akaike info criterion 17.09633 Sum squared resid 56363443 Schwarz criterion 17.18077 Log likelihood-339.9266 Durbin-Watson stat 1.674695 给定的,所以存在二阶自相关。 Dependent Variable: E Method: Least Squares Date: 12/09/13 Time: 10:41 Sample(adjusted): 1963 2001 Included observations: 39 after adjusting endpoints Variable Coefficient Std.Error t-Statistic Prob.E(-1)1.332544 0.253901 5.248284 0.0000 E(-2)-0.05780 0.449331-0.128638 0.8984 1 E(-3)-0.413896 0.263149-1.572860 0.1245 R-squared 0.887189 Mean dependent var-168.7096 Adjusted R-squared 0.880921 S.D.dependent var 3507.310 S.E.of regression 1210.295 Akaike info criterion 17.10892 Sum squared resid 52733319 Schwarz criterion 17.23689 Log likelihood-330.6239 Durbin-Watson stat 1.687480,给定的,所以不存在三阶自相关。 实验十一 第七章第 8 题 P171 Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 10:54 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 3.914451 1.952440 2.004902 0.1013 X1 0.060263 0.048378 1.245671 0.2681 X2 0.089090 0.037168 2.396978 0.0619 X3-0.012598 0.018171-0.693309 0.5190 X4 0.007406 0.017612 0.420498 0.6916 R-squared 0.979655 Mean dependent var 7.570000 Adjusted R-squared 0.963379 S.D.dependent var 1.233829 S.E.of regression 0.236114 Akaike info criterion 0.257851 Sum squared resid 0.278750 Schwarz criterion 0.409144 Log likelihood 3.710743 F-statistic 60.18950 Durbin-Watson stat 2.213879 Prob(F-statistic)0.000204 4 3 2 10074.0 0126.0 0890.0 0602.0 915.3ˆX X X X Y (2.0049)(1.2457)(2.3970)(-0.6933)(0.4205)1895.60 , 2139.2 , 9634.0 , 9797.02 2 F DW R R 括号内的表示 t 值,给定显著水平05.0 ,回归系数估计值都没有显著性。查 F 分布表,的临界值为 19.5)5 , 4(05.0 F,故 F=60.1895>5.19,回归方程显著。 分别计算4 3 2 1, , , X X X X 的两两相关系数,得 X1 X2 X3 X4 X1 1.000000 0.879363-0.338876 0.956248 X2 0.879363 1.000000-0.304705 0.760764 X3-0.338876-0.304705 1.000000-0.413541 X4 0.956248 0.760764-0.413541 1.000000 414.0 , 761.0 , 305.0 , 956.0 , 339.0 , 879.034 24 23 14 13 12 r r r r r r 可见,解释变量之间不是高度相关的。为了检验和处理多重共线性,采用修正法 Frisch 法。对 Y 分别关于4 3 2 1, , , X X X X 作最小二乘回归,得(1)Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 11:11 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 0.942307 0.572960 1.644630 0.1387 X1 0.122124 0.010405 11.73672 0.0000 R-squared 0.945112 Mean dependent var 7.570000 Adjusted R-squared 0.938251 S.D.dependent var 1.233829 S.E.of regression 0.306599 Akaike info criterion 0.650305 Sum squared resid 0.752024 Schwarz criterion 0.710822 Log likelihood-1.251524 F-statistic 137.7507 Durbin-Watson stat 1.683709 Prob(F-statistic)0.000003 11221.0 9423.0ˆX Y 751.137 , 684.1 , 938.0 , 945.02 2 F DW R R(2)Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 11:15 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 5.497455 0.307504 17.87768 0.0000 X2 0.205406 0.026933 7.626515 0.0001 R-squared 0.879088 Mean dependent var 7.570000 Adjusted R-squared 0.863974 S.D.dependent var 1.233829 S.E.of regression 0.455057 Akaike info criterion 1.440070 Sum squared resid 1.656618 Schwarz criterion 1.500587 Log likelihood-5.200350 F-statistic 58.16373 Durbin-Watson stat 0.612996 Prob(F-statistic)0.000062 22054.0 4975.5ˆX Y 164.58 , 613.0 , 864.0 , 879.02 2 F DW R R(3)Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 11:17 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 17.09021 7.986587 2.139864 0.0648 X3-0.095107 0.079695-1.193386 0.2669 R-squared 0.151119 Mean dependent var 7.570000 Adjusted R-squared 0.045009 S.D.dependent var 1.233829 S.E.of regression 1.205743 Akaike info criterion 3.388925 Sum squared resid 11.63052 Schwarz criterion 3.449442 Log likelihood-14.94462 F-statistic 1.424170 Durbin-Watson stat 0.647123 Prob(F-statistic)0.266905 30951.0 0902.17ˆX Y 424.1 , 647.0 , 045.0 , 151.02 2 F DW R R(4)Dependent Variable: Y Method: Least Squares Date: 12/09/13 Time: 11:20 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 2.017807 0.898099 2.246752 0.0548 X4 0.055027 0.008741 6.295432 0.0002 R-squared 0.832047 Mean dependent var 7.570000 Adjusted R-squared 0.811053 S.D.dependent var 1.233829 S.E.of regression 0.536321 Akaike info criterion 1.768688 Sum squared resid 2.301120 Schwarz criterion 1.829205 Log likelihood-6.843439 F-statistic 39.63246 Durbin-Watson 0.596061 Prob(F-statistic)0.00023 stat 4 3055.0 018.2ˆX Y 632.39 , 596.0 , 811.0 , 832.02 2 F DW R R 其中括号内的数字值是 t 值,根据经济理论分析和回归结果,易知观测值中1X 是最重要的解释变量,所以选取第一个回归方程为基本回归方程。 1.加入 X2,对 Y 关于 X1,X2 做最小二乘回归,得 Dependent Variable: Y Method: Least Squares Date: 12/10/13 Time: 09:01 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 2.322897 0.626102 3.710092 0.0076 X1 0.081826 0.015677 5.219553 0.0012 X2 0.079919 0.027340 2.923182 0.0222 R-squared 0.975284 Mean dependent var 7.570000 Adjusted R-squared 0.968222 S.D.dependent var 1.233829 S.E.of regression 0.219948 Akaike info criterion 0.052476 Sum squared resid 0.338641 Schwarz criterion 0.143252 Log likelihood 2.737618 F-statistic 138.1058 Durbin-Watson stat 2.264141 Prob(F-statistic)0.000002 2 107991.0 0818.0 322.2ˆX X Y (3.71009)(5.21955)(2.9231)1058.138.2641.2 , 96822.0 , 97528.02 2 F DW R R 92.2 45.2)1 3 10(, 01.5 45.2)1 3 10(2 025.0 1 025.0 t t t t 可以看出,加入2X后,拟合优度2R和2R均有所增加,参数估计值的符号也正确,并且没有影响1X系数的显著性,所以在模型中保留2X。 2.加入 X3,对 Y 关于 X1,X2,X3 做最小二乘回归,得 Dependent Variable: Y Method: Least Squares Date: 12/10/13 Time: 09:12 Sample: 1 10 Included observations: 10 Variable Coefficient Std.Error t-Statistic Prob.C 4.037285 1.793154 2.251500 0.0653 X1 0.079302 0.015827 5.010578 0.0024 X2 0.079503 0.027265 2.915951 0.0268 X3-0.015716 0.015410-1.019885 0.3471 R-squared 0.978935 Mean dependent var 7.570000 Adjusted R-squared 0.968403 S.D.dependent var 1.233829 S.E.of regressio...
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《最新《计量经济学综合实验》实验报告》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
