当前位置: 首页 > 教学资源 > 教案模板

高等代数教案模板

作者:3232323232 | 发布时间:2020-11-30 00:08:01 收藏本文 下载本文

第1篇:高等代数与高等数学

高等代数与高等数学的区别

高等代数、数学分析是数学专业中更细的数学研究的分类。高等代数是代数方向的究,而数学分析使用极限方法研究函数特性的数学。而高等数学是对非数学专业的人学习的区别于初等数学的数学,应当包括高等代数和数学分析部分。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,例如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。

其研究对象不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。

第2篇:高等代数教案第一章基本概念

第一章

一 综述

基本概念

1.本章是本门课程所需要的最基本概念(集合、映射、整数的一些性质、数环和数域)和方法(数学归纳法、反证法).所需位置不同,可根据课时安排及进度分散处理.如集合、整数的一些整除性质、数学归纳法、数环和数域可先讲,映射可放在线性空间前讲.2.从内容上讲,除集合中的卡氏积的概念及数环、数域的概念外,其它内容是学生在中学数学当中熟知的,只不过是将有关内容的系统化、理论化(如整数的整除性、映射、数学归纳法,其在中学中熟知其一些事实,今在理论上加以严密论证).3.新的知识点是集合的卡氏积、数环、数域的概念,数学归纳法作为定理的论证.4.学习本部分的难点是:从概念出发进行推理论证,这需要从具体例子引导训练,逐步培养.二 重点、难点

1.重点在于所有基本概念,特别是引入的新概念.2.难点是可逆映射、整数的整除性、数学归纳法本身的证明.

1.1

合一 教学思考

1.集合可以作为不定义的概念来处理,有些教材上给出了一个简单刻化.2.确定一个集合A,就是要确定哪些是集合的元素,哪些不是集合的元素.说明一个集合包含哪些元素时,常用“列举法”、“示性法”(描述法).3.中学代数大部分的内容是计算,因此一开始遇到证明题时,往往不知从何入手,此需注意培养学生的推理能力,这里应通过证明“集合相等”来加强这方面的训练.4.为稍拓宽知识,可讲解一下补集、幂集等概念.二 重点、要求

1.重点、难点:卡氏积的概念及从概念出发(集合相等、子集等)进行推理.2.要求:使学生了解有关集合的刻化及运算,培养推理能力.三 教学过程

1.集合:简称集,在此是一个不定义的原始概念,通常可给出如下描述性的解释:即所谓集合,是指由某些确定的事物(或具有某种性质的事物)组成的集体.其中每个事物称为这个集合的元素.常用大写字母A、B、C表示集合,用小写字母a、b、c表示集合的元素.若a是集合A的元素,就说a属于A,记作aA,或者说A包含a.若a不是集合A的元素,就说a不属于A,记作aA,或者说A 不包含a.常采用两种方法:

(1)列举法:列出集合的所有元素(包括利用一定的规律列出无限集)的方法.如A1,2,3,.(2)示性法(描述法):给出集合所具有的特征性质.如Bx|x3x40表示方程

2x23x40的解集.2.集合的分类(按所含元素的个数分): 有限集:只含有有限多个元素的集合.无限集:由无限多个元素组成的集合.空集:不含任何元素的集合.用表示.约定:是任何集合的子集.3.集合间的关系:

(1)设A、B是两个集合."xAxB")子集:若A的每个元素都是B的元素,则称A是B的子集(即若..记作AB

-1如:f:RR,xx;g:RR,x2.映射的合成x2.有fg.(1)定义3.设f:AB,g:BC是两个映射,对xA,有f(x)B,从而g(f(x))C,这样,对xA,就有C中唯一的g(f(x))与之对应,就得到A到C的一个映射,这个映射是由f:AB和g:BC所决定的,称为f与g的合成.记作gf.即:gf:AC,xg(f(x)).例子:f:RR,xx2;g:RR,xsinx.则

gf:RR,xsinx2;fg:RR,xsin2x.(2)映射合成满足结合律:

设f:AB,g:BC,h:CD,则由合成映射的定义可得AD的两个映射:h(gf),(hg)f,则h(gf)(hg)f.3.几类特殊映射

定义4.设f:AB,对xA,有f(x)B,则所有这样的象所作成B的子集,用f(A)表示,即f(A)f(x)|xA,叫做A在f下的象,或叫做映射f的象.(1)满射: 定义5.设f:AB是一映射,若f(A)B,则称f是A到B上的一个映射,也称f是一个满射.(2)单射: 定义6.设f:AB是一个映射,若对x1,x2A,只要x1x2,就有f(x1)f(x2),则称f是A到B的一个单射,简称单射.(3)双射(1-1对应):定义7.若f:AB既是单射又是满射,即

1)若 f(x1)f(x2)x1x2,x1,x2A;

2)f(A)B.则称f是A到B的一个双射.特别若f是A到A上的一个1-1对应,就称f为A的一个一一变换;有限集A到自身的双射称为A的一个置换.如:jA是A的一个一一变换,同样jB是B的一个一一变换.由映射合成及相等:若f:AB,则有fjAf,jBff.TH1.2.1令f:AB是一个映射,则:下述两条等价:1)f是双射;2)存在g:BA使得gfjA,fgjB.且2)成立时,其中的g由f唯一决定.(4)可逆映射及其逆映射

定义8.设f:AB,若存在g:BA,使得gfjA,fgjB,则称f是可逆映射,且称g为f的逆映射.求其逆的方法

由定理知:f:AB可逆f是双射.而验证双射有具体方法,所以可先证f可逆(双射),再求其逆.而由TH1证知f可逆时其逆唯一为g:BA,yx(若f(x)y)(即对yB,找在f下的原象).(5)代数运算

引例:我们常说整数加法是整数的一个“代数运算”.其意思是说对任一对整数(a,b),有确定的唯一一个整数(通过相加)与之对应,用映射的观点来说整数加法是ZZZ的一个映射::(a,b)ab.同样实数乘法亦然.一般地:

定义9.设A是一个非空集合,我们把AAA的一个映射叫做集合A的一个代数运算.若集合A 有代数运算,也说A对封闭.-3要从中体会严格的推理论述.此与多项式相应的问题平行,到时应对照学习.1.整除、带余除法(1)整除

这时a叫做b的一个因数,而b叫做a的一个倍数.若a不整除b(即对dZ,adb),记作a|b.B)整除的性质:

1)a|b,b|ca|c;

(传递性)2)a|b,a|ca|(bc);3)a|b,cZa|bc;

4)由2)、3)a|bi,ciZ,i1,2,3,,na|bcii;

5)1|a,a|0,a|a(aZ);由此任意整数a有因数1,a,它们称为a的平凡因数; 6)若a|ba|b;

7)a|b且b|aab或ab.(对称性)(2)带余除法

“整除”是整数间的一种关系,任意两个整数可能有这种关系,可能没有这种关系,一般地有:

TH1.4.1(带余除法)设a,bZ,且a0;那么q,rZ使得baqr

且0ra.满足上述条件的q,r是唯一的.2.最大公因数、互素(1)最大公因数

且c|a,c|bc|d(即d能被a与b的任一个公因数整除).则称d为a与b的一个最大公因数.最大公因数的概念可推广至有限个整数.B)最大公因数的存在性(及求法)

TH1.4.2 任意n(n2)个整数a1,a2,,an都有最大公因数;若d为a1,a2,,an的一个最大公因数,则d也是;a1,a2,,an的两个最大公因数至多相差一个符号.C)性质

TH1.4.3 设d为a1,a2,,an的一个最大公因数,那么t1,t2,,tnZ使得A)定义1.设a,bZ,若dZ使得bad,则称a整除b(或b被a整除).用符号a|b表示.d|a且d|bA)定义2.设a,bZ,dZ,若d满足:1)(即d是a与b的一个公因数);2)若cZdt1a1ta22tnan.略证:若a1a2an0,则d0,从而对tiZ都有0t1a1t2a2tnan;若ai不全为0,由证明过程知结论成立.(2)互素

定义3.设a,bZ,若(a,b)1,则称a,b互素;一般地设a1,a2,,anZ,若(a1,a2,,an)1,则称a1,a2,,an互素.3.素数及其性质

(1)定义4.一个正整数p1叫做一个素数,若除1,p外没有其他因数.(2)性质

1)若p是一个素数,则对aZ有(a,p)p或(a,p)1.(注意转换为语言叙述,证易;略)

2)aZ且a0,1;则a可被某一素数整除.3)TH1.4.5 设p是一个素数,a,bZ,若p|ab,则p|a或p|b.TH1.4.4 n个整数a1,a2,,an互素t1,t2,,tnZ使得t1a1t2a2tnan1.-56-

第3篇:浙江大学高等代数试题

浙江大学2006年攻读硕士研究生入学初试试题

考试科目:高等代数科目代号:341

注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效!

一、(15分)矩阵A,B具有相同的行数,把B的任意一列加到A得到矩阵秩不变,证明把B的所有列同时加到A上秩也不变.二、(15分)(1)把下面的行列式表示成按x的幂次排列的多项式

a11xD

a21x...an1x

a12xa22x...an2x

.....a1nxa2nx...annx

(2)把行列式D的所有元素都加上同一个数,则行列式所有元素代数余子式之和不变.三、(15分)证明下面的(i)和(ii)等价:(i)矩阵A是正交矩阵;

(ii)矩阵A的行列式为1;当A1时,矩阵所有元素的代数余子式为其本身,当A-1时,矩阵所有元素的代数余子式为其本身乘以-1.a

四、(15分)(1)设矩阵A

c

k

b2

,则矩阵A满足方程x(ad)xadbc0;d

(2)二阶矩阵满足A0,k2,则A0.3

五、(15分)设矩阵A2

2

232

20

2,P1

30

0

1*

1,BPAP2E,求B的特征值和特征向量.1

六、(15分)设W,W1,W2是向量空间V的子空间,W1W2,W1WW2W,W1WW2W,证明W1W2.

七、(15分)三阶矩阵A,B,C,D具有相同的特征多项式,证明其中必有两个矩阵相似.

八、(15分)设是向量空间V的正交变换,W是的不变子空间,证明W也是的不变子空间.九、(15分)设A为实矩阵,证明存在正交矩阵G,使GA的特征值均为实数.

十、(15分)设P为数域,fifi(x)P[x],gigi(x)P[x],i1,2,证明(f1,g1)(f2,g2)(f1f2,f1g2,g1f2,g1g2)

1

AG为上三角矩阵的充要条件是

注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用!dragonflier

2006-1-16

高等代数学习有感

初中代数教案模板

高等职业学校教案模板

数与代数教案模板

初中数学代数类教案模板

本文标题: 高等代数教案模板
链接地址:https://www.dawendou.com/jiaoxue/jiaoan/273615.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《高等代数教案模板》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有