六年级数学抽屉原理说课稿(热门5篇)
大文斗范文网会员为你整理了“六年级数学抽屉原理说课稿”5篇范文,希望对你有参考作用。
篇1:《抽屉原理》六年级数学说课稿
【教学内容】《义教课标实验教科书数学》(人教版)六年级下册抽屉原理”(课文第70页-71例1,2做一做及练习十二相应的练习)
【教学目标】
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题.
2、通过操作发展学生的类推能力,形成比较抽象的数学思维.
3、通过“抽屉原理”的灵活应用感受数学的魅力.
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”.
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”
【教学准备】多媒体课件
【自学内容】见预习作业
【教学预设】
一、谈话引入,激发兴趣
师:上课前同学们告诉老师,我们班有59人.有了这个信息,老师就可以肯定地告诉大家:咱们班至少有5个人是在同一个月生日的.老师有问过你们的生日是哪一天了吗?
生:没有.
师:那么,在没有调查的情况下,老师为什么就敢肯定地得出这样的结论呢?这其中有什么样的道理呢?通过这节课的学习,相信大家一定会明白其中的奥秘.
二、自主探究,发现规律
1、列举
师:要想弄明白其中的道理,我们可以从一些小的数据开始研究.现在老师要求你们“把4本书放进3个抽屉里”,你会怎样放?有几种不同的放法?
课件出示:
2 2 0
2 1 1
3 1 0
4 0 0
2、判断对错
师:针对“把4本书放进3个抽屉里”这个事儿,现在有下面这样的一些说法,我们一起来判断说的对不对?
出示:1)不管怎么放,任意一个抽屉里最多放4本.
2)不管怎么放,任意一个抽屉里至少放1本.
3)不管怎么放,总有一个抽屉里恰好有2本.
4)不管怎么放,总有一个抽屉里至少有1本.
5)不管怎么放,总有一个抽屉里至少有2本.
6)不管怎么放,总有一个抽屉里至少有3本.
师:首先来看第一个说法:不管怎么放,任意一个抽屉里最多放4本.
生:对的.
师:第二个呢?不管怎么放,任意一个抽屉里至少放1本.
生:不对.
师:为什么?
生:很明显,有的抽屉里没放书.
师:很不错.我们就要像这位同学一样,如果你认为不对,我们就要找出一个这样的反例来推翻它.下一个!不管怎么放,总有一个抽屉里恰好有2本.
生:错!在(3,1,0)和(4,0,0)这两种放法中就找不到这个抽屉.
师:第四个说法呢?不管怎么放,总有一个抽屉里至少有1本.
生:不对!
师:请你举出一个反例来.
生:在(2,2,0)这种放法中就有一个抽屉里没放书.
师:有没有不同意见?
生:我不同意!我认为这种说法是对的.在每种放法的三个抽屉里,总会找到放有1本或多于1本书的这样一个抽屉.
师:我们来找找看!(2,1,1)(2,2,0)(3,1,0)(4,0,0)
师:第五个“不管怎么放,总有一个抽屉里至少有2本”.
(根据刚才判断第四个说法的经验,学生应该会判断此种说法是对的,师也可带领学生去找每种放法中的这个抽屉)
师:最后一个!不管怎么放,总有一个抽屉里至少有3本.
生:不对!在(2,1,1)和(2,2,0)这两种放法里就找不到这个抽屉.
3、引导探究
师:通过大家的判断,最终有三种说法是对的.“不管怎么放,任意一个抽屉里最多放4本书”这个不关心,我们今天不研究这个.我们主要研究这两个:“总有一个抽屉里至少有1本”和“总有一个抽屉里至少有2本”.
师:在说话的时候,我们经常性地会说一句话强不强.比方说,咱们班有多少人?你说“我们班多于30”人,我说“我们班多于50人”.那你们觉得,哪句话更强一点?
生:“我们班多于50人”这句话更强一点.因为“多于50人”就更加“多于30人”.
师:同意吗?那在这两句话中(“总有一个抽屉里至少有1本书”和“总有一个抽屉里至少有2本书”),哪句更强一点呢?
生:第二句.“总有一个抽屉里至少有2本书”了,那“总有一个抽屉里至少有1本书”就肯定不用说啦!
师:那我们就把更强的这句话留下来,得出这样一个结论:把4本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有2本书.
4、深入研究
师:如果多了1本书,把5本书放进3个抽屉里,我们可不可以还用“不管怎么放,总有一个抽屉里至少有2本书”这句话来作结论?
第一种情况:
生1:不行!总有一个抽屉里至少有3本书,比如(3,1,1)的放法.
师:你的意思是用一句更强的话代替它了,是不是?也就是说,把5本书放进3个抽屉里,不管怎么放,“总有一个抽屉里至少有1本书”是对的,“总有一个抽屉里至少有2本书”也是对的,现在你能用一个更强的结论来说明这个结果“总有一个抽屉里至少有3本书”,是这个意思吧?
师:同学们同意吗?
生2:我不同意!
师:你不同意,请你举出一个反例来推翻它!
生2:如果是(2,2,1)这种放法,就可以推翻“总有一个抽屉里至少有3本书”,还是只能说“总有一个抽屉里至少有2本书”.
第二种情况:
生:可以!
师:现在多了一本书,由4本到5本,我们当然可以肯定“总有一个抽屉里至少有2本书”,但――是不是可以用一句更强的结论,比如说“把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书”呢?
生:不行!有(2,2,1)这种放法就行不通了!
师:看来,把5本书放进3个抽屉里,肯定不能说“总有一个抽屉里至少有3本书”.那――要达到“总有一个抽屉里至少有3本书”这个结论,6本书行不行?
生:不行,(2,2,2)就没有这个抽屉.
师:果然不行!6本不行,7本呢?
生:可以!(学生有可能举出各种正例)
师:不能举出推翻它的反例,那就是说7本可以.也就是“把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本.”那――能不能说“总有一个抽屉里至少有4本”?
生:不能,(2,2,3)这放法就行不通.
师:至少要几本书,才能得到“总有一个抽屉里至少有4本”这个结论?
(留给学生独立思考时间,也可适当地讨论、交流)
师:其实我们也可以这样想,“把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有4本”这个结论如果不成立的话,那么每个抽屉最多只能放3本,这样的话总共只能放下9本,与“10本书放进3个抽屉”这个前提条件是相矛盾的.所以“10本书放进3个抽屉,总有一个抽屉里至少有4本”.
师:10本书放进3个抽屉,不管怎么放,“总有一个抽屉里至少有4本”这个结论是对的,那么,“总有一个抽屉里至少有3本”也是对的,“总有一个抽屉里至少有2本”还是对的,当然,“总有一个抽屉里至少有1本”肯定是对的.不过,在这里,哪个结论是最强的?
生:“总有一个抽屉里至少有4本”这个结论是最强的.
师:“总有一个抽屉里至少有5本”呢?
生:不行!(3,3,4)
5、提出问题
师:既然这样的话,把100本书放进3个抽屉里,不管怎么放,“总有一个抽屉里至少有1本”是可以的,“总有一个抽屉里至少有1本”或者“至少有3本”都是可以的',……,“总有一个抽屉里至少有50本”行不行?
生:不行!(举出一个反例即可)
师:那最多可以说到哪个呢?
生:34!如果每个抽屉放33本的话,剩余的1本可以放到任意一个抽屉里,所以“总有一个抽屉里至少有34本”.
师:那你的这个“33”是怎么得到的?
生:100÷3=33……1.
师边叙述边板书:把物体尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少个,剩下的物体不管放到哪个抽屉,总有一个抽屉比平均分得的个数(也就是商)多1个.
物体数÷抽屉数=商……余数总有一个抽屉里至少有(商+1)个物体
6、介绍“抽屉原理”
同学们的这一发现,称为“抽屉原理”.“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以人们以他的名命名,又称“狄利克雷原理”.这一原理在解决实际问题中有着广泛的应用.
三、应用原理,解决问题
篮子里有苹果、橘子、梨三种水果若干个,现有20个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?
四、全课小结
在用“抽屉原理”解决的一些问题中,“抽屉”和“物体”不是很明显,需要我们制造出“抽屉”和“物体”.制造出“抽屉”和“物体”是比较困难的,这一方面需要同学们去分析题目中的条件和问题,另一方面需要多做一些题来积累经验.
篇2:小学六年级数学《抽屉原理》说课稿
小学六年级数学《抽屉原理》说课稿
一、说教材
1、教学内容:我说课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2.
2、教材地位及作用及学情分析
本单元用直观的方法,介绍了“抽屉原理”的两种形式,并安排了很多具体问题和变式,帮助学生通过“说理”的方式来理解“抽屉原理”,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
教材中,有三处孩子们不好理解的地方:1)“总有一个”、“至少”这两个关键词的解读;2)为了达到“至少”而进行“平均分”的思路,3)把什么看做物体,把什么看做抽屉,这样一个数学模型的建立。六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。于是我安排通过例1的直观操作教学,及例2的适当抽象建模,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法。
3、本节课的教学目标
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
知识性目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
能力性目标:经历抽屉原理的探究过程,通过实践操作,发现、归纳、总结原理。
情感性目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学的魅力。
4、教学重、难点的确定
教学重点:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“至少”的含义,并会用抽屉原理解决实际问题。
二、说教法、学法
六年级学生既好动又内敛,于是教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。课堂始终以设疑及观察思考讨论贯穿于整个教学环节中,采用师生互动的教学模式进行启发式教学。学法上主要采用了自主合作、探究交流的学习方式。体现数学知识的形成过程,感受数学学习的乐趣。
三、说教学过程
(一)、游戏激趣,初步体验。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了2把椅子,请3个同学上来,谁愿来?
1.游戏要求:你们3位同学围着椅子走动,等音乐定下来后请你们3个都坐在椅子上,每个人必须都坐下。
2.师:老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果不相信咱们再做一次,好不好?
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。【设计意图:第一次与学生接触,在课前进行的游戏激趣,一使教师和学生进行自然的沟通交流;二激发学生的兴趣,引起探究的愿望;三为今天的探究埋下伏笔。】
(二)、操作探究,发现规律。
1、提出问题:把4支铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进 支铅笔。让学生猜测“至少会是”几支?
2、验证结论:不管学生猜测的结论是什么,都要求学生借助实物进行操作,来验证结论。学生以小组为单位进行操作和交流时,教师深入了解学生操作情况,找出列举所有情况的学生。
(1)先请列举所有情况的学生进行汇报,一说明列举的不同情况,二结合操作说明自己的结论。(教师根据学生的回答板书所有的情况)
学生汇报完后,教师再利用枚举法的示意图,指出每种情况中都有几支铅笔被放进了同一个文具盒。
【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。】
(2)提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗?
学生汇报了自己的方法后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要放1支铅笔呢?请相互之间讨论一下。
在讨论的基础上,教师小结:假如每个文具盒放入一支铅笔,剩下的一支还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具里至少有2支铅笔。只有平均分才能将铅笔尽可能的分散,保证“至少”的情况。
【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。】
(3)初步观察规律。
教师继续提问:6支铅笔放进5个文具盒里呢?你还用一一列举所有的摆法吗?7支铅笔放进6个文具盒里呢?100支铅笔放进99个文具盒呢?你发现了什么?
【设计意图:让学生在这个连续的'过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维。】
3、运用抽屉原理解决问题。
出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。】
4、发现规律,初步建模。
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。现在你能解释为什么老师肯定前两排的同学中至少有2人的生日是同一个月份吗?
【设计意图:通过对不同具体情况的判断,初步建立“物体”“抽屉”的模型,发现简单的抽屉原理。研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。】
5、用有余数的除法算式表示假设法的思维过程。
(1)教学例2,可以出示问题后,让学生说理,然后问:这个思考过程可以用算式表示出来吗?
(2)做一做:8只鸽子飞回3个鸽舍,至少有3支鸽子飞进同一个鸽舍。为什么?
【设计意图:在例1和做一做的基础上,相信学生会用平均分的方法解决“至少”的问题,将证明过程用有余数的除法算式表示,为下一步,学生发现结论与商和余数的关系做好铺垫。】
(三)、巩固练习。
扑克牌游戏
①师与生配合做
教师洗牌学生抽其中的任意5张,教师猜其中至少有2张是同花色的。
②学生做游戏
要求探寻规律并说明理由。
【设计意图:用游戏的形式激发学生的兴趣,用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。】
(四)、小结全课,激发热情
1、今天的你有什么收获?
我们将铅笔、鸽子、扑克看做物体数,文具盒、鸽舍、四种花色看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)
小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。
2、介绍课外知识。
介绍抽屉原理的发现者——数学家狄里克雷。
【设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。】
篇3:《抽屉原理》数学说课稿
《抽屉原理》数学说课稿
一、教材分析
本单元内容通过几个直观的例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用抽屉原理解决。“抽屉原理”的理论本身并不复杂,甚至可以说是显而易见的。但“抽屉原理”的应用却是千变万化的,它可以解决许多有趣的问题,并能常常得到一些令人惊异的结果。本单元用直观的方法,介绍了“抽屉原理”的两种形式,本课主要介绍了“抽屉原理”的第一种形式。同时教材还安排了很多具体问题和变式,帮助学生加深理解。在学习过程中,让学生初步经历“数学证明”的过程,这有助于提高学生的逻辑思维能力,为以后学习较为严密的数学证明做准备。教材还注重了培养学生的“模型”思想,这个过程就是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。
二、学情分析
1、六年级学生好动,注意力易分散,教师一方面要适当引导,激发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。
2、知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此教师要耐心细致的引导,不能急于把规律传授给学生,要让学生体会总结规律的过程。
三、教学目标及重难点的确定
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,并会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生类推能力,形成抽象的数学思维。
3、通过“抽屉原理”的探究,激发学生探究数学知识的兴趣,感受数学的魅力。
根据学生学情和教学目标,我确立了以下教学重难点。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单的实际问题加以“模型化”
四、教法学法分析
1、根据六年级学生的理解能力和思维特征,为使课堂生动、有趣、高效,特注重提出问题、故意设疑并以观察思考讨论贯穿于整个教学环节中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生多观察、动脑想、大胆猜、勤钻研的研讨式学习方法。
2、体现数学知识的形成过程,提供充分的探索时间,让学生根据自己的经验通过观察,实验,猜测,交流等数学活动形成良好的数学思维习惯,提高自己解决问题的能力,感受数学创造的乐趣。
五、教学设计分析
为充分发挥学生的主体性和教师的主导辅助作用,教学过程中我设计了以下几个教学环节:
(一)、激发情趣,导入新知:
通过拿出一盒新扑克牌,取出两张王牌,再把它洗转,然后让学生从中任意抽取5张,在这五张牌中至少有两张是同一花色的。通过这个小魔术引发问题:“象这样的现象中隐藏着什么数学奥秘呢?”这节课我们就共同来探
讨。从而导入新课——数学广角“抽屉原理”。
(板书课题)(设计意图:激发学生的学习兴趣,使学生积极投入到对问题的研究中。)
(二)、自主操作,探究新知
1、课件出示:把3枝铅笔放在2个文具盒,可以怎么放,有几种放法?你有什么发现?
(1)学生活动:小组用小棒摆一摆并说出他们的发现。
(2)教师用课件展示验证他们的发现。
(3)小结:不管怎么放,总有一个文具盒里至少放进2枝铅笔。
2、课件出示:把4枝铅笔放在3个文具盒,可以怎么放,有几种放法?你有什么发现?
(1)学生活动:小组用小棒摆一摆并说出他们的发现。
(2)教师用课件展示验证他们的发现。
(3)小结:不管怎么放,总有一个文具盒里至少放进2枝铅笔。
(三)、探究归纳,形成规律
1、以上两个例题由于数据较小,学生用动手操作或分解数的方法仍有其直观、简单的特点,这也是学生最容易想到的方法。但由于枚举的方法毕竟受到数据大小的限制,教师应该进行适当的引导。由于数据很大,用枚举法解决就相当繁琐了,就可以促使学生自觉采用更一般的方法,即假设法。假设法最核心的思路就是把书尽量多地“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉,总有一个抽屉比平均分得的本数多1本。这个核心思路是用“有余数除法”这一数学形式表示出来的,需要学生借助直观,逐步理解并掌握。
把6个苹果放入5个抽屉中,至少有几个放到同一个抽屉里?
把7个苹果放入6个抽屉中,至少有几个放到同一个抽屉里呢?
把100个苹果放入99个抽屉中,至少有几个放到同一个抽屉里呢?
把6苹果放入4个抽屉中,至少有几个放到同一个抽屉里呢?
把8苹果放入5个抽屉中,至少有几个放到同一个抽屉里呢?
总结规律:只要物体数量是抽屉数的一倍多(不到两倍),总有一个抽屉里至少放进2物体。
(学生会自然地比较出方法的优劣,枚举法受到数量多少的局限,假设法能够方便地解决一般性的问题。)
(设计意图:在研究问题、探索规律时,先从简单的情况开始研究探究方法。证明过程中,展示了不同学生的证明方法,体现了不同学生的思维水平,使学生既互相学习、触类旁通,又建立“建模”思想,突出了学习方法。)
2、认识“抽屉原理”。
教师:象上面这种问题就是“抽屉原理”,“抽屉原理”,最先是由19世纪的德国数学家狄里克雷应用于解决问题,后来人们为了纪念他从这么平凡的事情中发现的规律,就把个规律用他的名字命名,叫做“狄里克雷原理”,又把它叫做“鸽巢原理”。在这里,“4枝铅笔”就是“4个要分的物体”,“3个文具盒”就是“3个抽屉”。把此问题用“抽屉原理”的语言描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。
(四)、灵活运用,解决问题
课本P69页和P70页“做一做”(目的是用形成的规律做题,让学生体会用规律解题后成功的喜悦。)
(五)、归纳小结,强化思想
(1)内容总结
把m个物体放进n个空抽屉里(m >n n≠0),m是n的一倍多(不到两倍)那么一定有一个抽屉中放进了至少2个物体。
(2)方法归纳
对于本节课的学习,让学生谈一谈自己的感受?
物体数÷抽屉数﹦商??余数
至少数﹦商+1
六、教学反思
1.要联系生活学数学。在教学中我深切的体会到要让学生学好数学就一定要让他们明白:数学来源于生活,最终又应用于生活.要让学生爱数学就先让他们爱生活.这就需要我们在备课时不局限于教材,要结合生活实际去备课
.2.教师一定要敢于给学生大量的时间与空间,让学生经历“发现问题——大胆猜想——实验验证——解决问题”的全过程,让他们的才能与智慧得以施展,以学生为主体的观念贯穿始终,充分发挥学生的自主性,生成和构建自己的知识体系。
篇4:《抽屉原理》说课稿
这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。
一、说教材
本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。
二、说教学目标
根据《数学课程标准》和教材内容,我确定本节课学习目标如下:
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的.实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。
教学难点:理解抽屉原理中“总有”“至少”的含义。
我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。
三、说教法学法
教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。
学法上学生主要采用了自主、合作、探究式的学习方式。
四、说教学流程
本节课共四个教学环节:游戏导入——探究新知——解决问题——游戏深化。
下面我分别说说这样设计的意图。
第一环节——游戏导入
通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
第二环节,探究新知
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣,让学生不但知其然,更要知其所以然。课上我让学生通过列举法、数的分解法及假设法探究总结出了结论:3本书,放到2个抽屉里,不管怎么放,总有一个抽屉里至少有2本书。这是本课的重点,接着引导学生把每种分法中得书最多的旁边作个记号,得出每种分法中有一名学生得2本、3本即2本书以上,再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解“总有”“至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。
在此基础上,我让学生把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能得出结论。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”
第三环节——解决问题
数学来源于生活又服务于生活,此环节我选择了贴近学生生活的喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。
第四环节——游戏深化
课的开始是游戏导入,结束时必须让学生没有遗憾的离开课堂,所以我在出示了几道关于出生年、月、日的练习题,在解决这几个问题时,我把问题逐步深化,比如:四(3)班有43名同学,至少有多少人在同一个月出生?我校有1603名学生至少有xx人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?这一类问题正是下节课要学习的抽屉原理(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了相信科学不迷信的情感教育,落实情感教育标。
篇5:抽屉原理说课稿
一、说教材
《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。让学生经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。
二、说教学目标
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
教学重点:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”,并会用“抽屉原理”解决简单的实际问题。
三、说教学流程
本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结
下面我分别说说前3个环节。
第一环节——游戏导入
通过“抢椅子”游戏,体验不管怎么坐,一定有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
第二环节——探究新知
此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,让学生不但知其然,更要知其所以然。课上我让学生通过小组合作摆一摆,说一说,让每一个学生都参与到知识的探究中来,让学生实际到讲台前演示,并对数进行分解法,把学生得出的结论进行汇总,最后由学生总结出了结论:5根小棒放进4个杯子,一定有一个杯子里至少有2根小棒。例2是让学生明确数量、抽屉和结论三者之间的关系,特别是对“一定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”,引导学生总结归纳这一类“抽屉问题”的一般规律。
第三环节——解决问题
此环节是对学生学习效果的检验,在设置习题方面采取层层深入,有一定的梯度,由学生很容易找到抽屉的题型过度到抽屉隐藏在题目中,逐渐提高难度,所选择的题力争与实际生活相结合。
整节课,我始终注意调动学生的学习兴趣,通过小组讨论,动手操作,学生演示,幻灯示范,抓住学生的思维,让学生通过我的引导来完成本节课的学习。
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《六年级数学抽屉原理说课稿(热门5篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
