当前位置: 首页 > 其他范文 > 其他范文

初二数学知识点(精选19篇)

作者:ychdzx | 发布时间:2023-12-25 15:53:24 收藏本文 下载本文

大文斗范文网会员为你整理了“初二数学知识点”19篇范文,希望对你有参考作用。

篇1:初二数学知识点

初二上学期数学知识点归纳

一、勾股定理

1、勾股定理

直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、三角形内角和定理:三角形三个内角的和等于180度。

(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)三角形的外角与它相邻的内角是互为补角。

3、三角形的外角与它不相邻的内角关系

(1)三角形的一个外角等于和它不相邻的两个内角的和。

(2)三角形的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

八年级下册数学复习资料

【零指数幂与负整指数幂】

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

难点:理解和应用整数指数幂的性质。

一、复习练习:

1、;=;=,=,=。

2、不用计算器计算:÷(—2)2—2-1+

二、指数的范围扩大到了全体整数.

1、探索

现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成8.64×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.

3、探索:

10-1=0.1

10-2=

10-3=

10-4=

10-5=

归纳:10-n=

例如,上面例2(2)中的0.000021可以表示成2.1×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.

所以35纳米=35×10-9米.

而35×10-9=(3.5×10)×10-9

=35×101+(-9)=3.5×10-8,

所以这个纳米粒子的直径为3.5×10-8米.

5、练习

①用科学记数法表示:

(1)0.00003;(2)-0.0000064;(3)0.0000314;(4)2013000.

②用科学记数法填空:

(1)1秒是1微秒的1000000倍,则1微秒=_________秒;

(2)1毫克=_________千克;

(3)1微米=_________米;(4)1纳米=_________微米;

(5)1平方厘米=_________平方米;(6)1毫升=_________立方米.

初二数学复习提纲方法

一、克服心理疲劳

第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力;第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态;第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。

二、战胜高原现象

复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。

三、重视复习“错误”

如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。

四、把握心理特点搞好考前复习

实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。

1、课本不容忽视

对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。

2、错题本

相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。

篇2:初二数学知识点

初二下册数学知识点归纳

第一章一元一次不等式和一元一次不等式组

一、不等关系

1、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.

2、要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

3、准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.

非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0

非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0

二、不等式的基本性质

1、掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a>b,并且c<0,那么ac

2、比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:

a>b<===>a-b>0

a=b<===>a-b=0

aa-b<0

(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.

三、不等式的解集:

1、能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

2、不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

3、不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

八年级上册期末数学复习资料

第一章勾股定理

1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。满足的三个正整数称为勾股数。

第二章实数

1.平方根和算术平方根的概念及其性质:

(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

2.立方根的概念及其性质:

(1)概念:若,那么是的立方根,记作:;

(2)性质:①;②;③=

3.实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5.算术平方根的运算律:(≥0,≥0);(≥0,>0)。

第三章图形的平移与旋转

1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

八年级数学学习方法技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。

篇3:初二数学知识点

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:

(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°。

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

篇4:初二数学知识点

数的开方

1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

2.平方根的性质:

(1)正数的平方根是一对相反数;

(2)0的平方根还是0;

(3)负数没有平方根.

3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.

5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.

6.两个重要公式:

(1) ; (a≥0)

(2) .

7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.

8.立方根的性质:

(1)正数的立方根是一个正数;

(2)0的立方根还是0;

(3)负数的立方根是一个负数.

9.立方根的特性: .

10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

11.实数:有理数和无理数统称实数.

12.实数的分类:(1) (2) .

13.数轴的性质:数轴上的点与实数一一对应.

14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .

三角形

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:

(1) ∵AD平分∠BAC

∴∠BAD=∠CAD

(2) ∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

几何表达式举例:

(1) ∵AD是三角形的中线

∴ BD = CD

(2) ∵ BD = CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

几何表达式举例:

(1) ∵AD是ΔABC的高

∴∠ADB=90°

(2) ∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

几何表达式举例:

(1) ∵AB+BC>AC

∴……………

(2) ∵ AB-BC

∴……………

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形. (如图)

几何表达式举例:

(1) ∵ΔABC是等腰三角形

∴ AB = AC

(2) ∵AB = AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形. (如图)

几何表达式举例:

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2) ∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°;(如图)

(2)直角三角形的两个锐角互余;(如图)

(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1) (2) (3)(4) 几何表达式举例:

(1) ∵∠A+∠B+∠C=180°

∴…………………

(2) ∵∠C=90°

∴∠A+∠B=90°

(3) ∵∠ACD=∠A+∠B

∴…………………

(4) ∵∠ACD >∠A

∴…………………

篇5:初二数学知识点

[同底数幂的乘法]

am·an=am+n(m、n都是正整数)

同底数幂相乘,底数不变,指数相加.

[幂的乘方]

(am)n=amn(m,n都是正整数)

幂的乘方,底数不变,指数相乘.

[积的乘方]

(ab)n=anbn(n是正整数)?

积的乘方等于把积的每个因式分别乘方,再把所得的幂相乘.?

[单项式乘以单项式]

单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

[单项式乘以多项式]

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.

[多项式乘以多项式]

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

篇6:初二数学知识点

[平方差公式]

(a+b)(a-b)=a2-b2

两个数的和与这两个数的差的积,等与这两个数的平方差.

1. 公式的结构特征:

⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.

⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).

2. 公式的应用:

⑴公式中的字母a,b可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.

⑵公式中的是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.

⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数.

如:(a+b)( a - b)= a2 - b2

↓↓ ↓↓ ↓ ↓

计算:(1+2x)(1-2x)= ( 1 )2-( 2x )2 =1-4x2

篇7:初二数学知识点

[轴对称变换]

由一个平面图形得到它的轴对称图形叫做轴对称变换.

成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.

[轴对称变换的性质]

(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样

(2)经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点.

(3)连接任意一对对应点的线段被对称轴垂直平分.

[作一个图形关于某条直线的轴对称图形]

(1)作出一些关键点或特殊点的对称点.

(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.

初二数学知识点整理:用坐标表示轴对称

[关于坐标轴对称]

点P(x,y)关于x轴对称的点的坐标是(x,-y)

点P(x,y)关于y轴对称的点的坐标是(-x,y)

[关于原点对称]

点P(x,y)关于原点对称的点的坐标是(-x,-y)

[关于坐标轴夹角平分线对称]

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是(-y,-x)

[关于平行于坐标轴的直线对称]

点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);

点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y)

篇8:初二数学知识点

[等腰三角形]

有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.

[三角形按边分类]

三角形

[等腰三角形的性质]

性质1:等腰三角形的两个底角相等(简写成“等边对等角”)

性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.

特别的:(1)等腰三角形是轴对称图形.

(2)等腰三角形两腰上的中线、角平分线、高线对应相等.

[等腰三角形的判定定理]

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).

特别的:

(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.

(2)有两边上的角平分线对应相等的三角形是等腰三角形.

(3)有两边上的中线对应相等的三角形是等腰三角形.

(4)有两边上的高线对应相等的三角形是等腰三角形.

[利用“三角形奠基法”作图]

根据已知条件先作出一个与所求图形相关的三角形,然后再以这个图形为基础,作出所求的三角形.

篇9:初二数学知识点

[轴对称图形]

如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.

有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.

[轴对称]

有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称的性质]

如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.

[轴对称与轴对称图形的区别]

轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.

[线段的垂直平分线]

(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).

(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.

篇10:初二数学知识点

第十六章 二次根式

主要知识点:

1、二次根式的概念

2、二次根式的性质

3、简二次根式与同类二次根式

4、二次根式的运算

中考分值:

填空一题、选择一题共4~8分。

大题目中的计算基本都会运用到二次根式的计算。

重难点:

初中第一次将有理数的计算拓展到无理数的计算。

二次根式的运算是基础运算,为后面各种方程的计算做基础。

二次根式的计算比较容易出错。

第十七章一元二次方程

主要知识点:

1、一元二次方程的概念

2、一元二次方程的解法

3、一元二次方程根的判别式

4、一元二次方程的应用

中考分值:

所有需要运算的题目基本都需要运用到解一元二次方程,分值不低于30分。

重难点:

一元二次方程解法多样,需要注意方法的选择。

铺垫型知识点,为后面学习分式方程、无理方程等做铺垫。

如果不会解一元二次方程中考基本寸步难行。

第十八章正比例函数和反比例函数

主要知识点:

1、函数的概念

2、正比例函数

3、反比例函数

4、函数表示法

中考分值:

填空选择一题4分

重难点:

初中第一次接触函数,概念和意义比较难理解。

这一章是所有函数的基础,为后面学习一次函数、二次函数做铺垫。

第十九章几何证明

主要知识点:

1、公理、定理及命题,逆命题及逆定理

2、线段的垂直平分线

3、角平分线

4、直角三角形的性质

5、勾股定理

中考分值:

21题几何证明10分,填空选择8~12分。

18、25题难题基本都会运用到本章所学知识点。

重难点:

相较于初一的几何,这一章的难度大大增加,是本学期最重要的章节。

这一章所学的知识点都是几何比较轴心的知识点,以后学习几何会经常使用。

篇11:初二数学知识点

一、分式

1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

2、整式和分式统称为有理式,即有:

3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

二、分式的乘除法

1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

2、分式乘方,把分子、分母分别乘方。

逆向运用,当n为整数时,仍然有成立。

3、分子与分母没有公因式的分式,叫做最简分式。

三、分式的加减法

1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

2、分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

(1)同分母的分式相加减,分母不变,把分子相加减;

上述法则用式子表示是:

(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

上述法则用式子表示是:

3、概念内涵:

通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

四、分式方程

1、解分式方程的一般步骤:

①在方程的两边都乘最简公分母,约去分母,化成整式方程;

②解这个整式方程;

③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去。

2、列分式方程解应用题的一般步骤:

①审清题意;

②设未知数;

③根据题意找相等关系,列出(分式)方程;

④解方程,并验根;

⑤写出答案。

篇12:初二数学知识点

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)?(a+b).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.

2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学二次函数的应用知识点解析,希望对大家的学习有一定帮助。

2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),则此抛物线的解析式为().

3.某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()

4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.则当y最大时,x所取的值是()

A.0.5 B.0.4 C.0.3 D.0.6

篇13:初二数学知识点

【相似、全等三角形】

1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

5、判定定理3三边对应成比例,两三角形相似(SSS)

6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

8、性质定理2相似三角形周长的比等于相似比

9、性质定理3相似三角形面积的比等于相似比的平方

10、边角边公理有两边和它们的夹角对应相等的两个三角形全等

11、角边角公理有两角和它们的夹边对应相等的两个三角形全等

12、推论有两角和其中一角的对边对应相等的两个三角形全等

13、边边边公理有三边对应相等的两个三角形全等

14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

15、全等三角形的对应边、对应角相等

篇14:初二数学知识点

1线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

2定理1关于某条直线对称的两个图形是全等形

3定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

4定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

5逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

6勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

7勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

8定理四边形的内角和等于360°

9四边形的外角和等于360°

10多边形内角和定理n边形的内角的和等于(n-2)×180°

11推论任意多边的外角和等于360°

12平行四边形性质定理1平行四边形的对角相等

13平行四边形性质定理2平行四边形的对边相等

14推论夹在两条平行线间的平行线段相等

15平行四边形性质定理3平行四边形的对角线互相平分

16平行四边形判定定理1两组对角分别相等的四边形是平行四边形

篇15:初二数学知识点

1、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。2、角的平分线及其性质

一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:

(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

3垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。2、三角形中的主要线段

(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。6、三角形的三边关系定理及推论

(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:

①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。③证明线段不等关系。7、三角形的角关系

三角形的内角和定理:三角形三个内角和等于180°。推论:

①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。等角的补角相等,等角的余角相等。

8、三角形的面积

三角形的面积=

2

1

×底×高应用:经常利用两个三角形面积关系求底、高的比例关系或值

篇16:初二数学知识点

第一章三角形的证明

1、等腰三角形

(1)三角形全等的性质及判定

全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、

(2)等腰三角形的判定、性质及推论

性质:等腰三角形的两个底角相等(等边对等角)

判定:有两个角相等的三角形是等腰三角形(等角对等边)

推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)

(3)等边三角形的性质及判定定理

性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。

(4)含30度的直角三角形的边的性质

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

2、直角三角形

(1)勾股定理及其逆定理

定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2)直角三角形两个锐角之间的关系

定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3)含30度的直角三角形的边的定理

定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

篇17:初二数学知识点

一、平均数、中位数、众数的概念

1.平均数

平均数是指在一组数据中所有数据之和再除以数据的个数。

2.中位数

中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。

3.众数

众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。

数学的学习方法

1、勤动手。学习数学不能光用脑子想想就可以的,学数学一定要勤动手,有很多时候,没有想明白,但用手去写一写,说不定就做出来了。

2、作业很重要。学习数学的一个重要方法就是要完成老师布置得作业,如果只是上课听讲,那是远远不够的,在完成老师布置作业的同时,还要多做课后习题进行巩固。

3、上课预习,下课复习。学习数学的很重要一点便是,上课之前做好预习,这样才能在听课的过程中重点听自己预习时不太懂的知识点,下课要及时复习,上课时听得没有经过巩固很容易忘记。

4、总结错题库。学习数学的时候,可以用一个本子来记录自己所做错的题目,每隔3天左右,再回头进行做一遍,有些错题,当时可能会做了,但过几天有可能就会再次忘记。

篇18:初二数学知识点

第一章:实数

1.1算数平方根

1.1.1算数平方根的定义:若一个正数$a$的平方等于$b$,即$a^2=b$,那么这个正数$a$叫做$b$的算术平方根。记作$sqrt{b}$。

1.1.2几个关键概念:正数和零的算术平方根只有一种,就是它本身;正数的算术平方根,也就是这个正数的平方根有两个,这两个根互为相反数;零的算术平方根是零。

1.2平方根

1.2.1平方根的性质:正数的平方根有两个,它们互为相反数;$0$的平方根是$0$;负数没有平方根。

1.2.2几个关键概念:若一个数的平方等于$a$,那么这个数叫做$a$的平方根或二次方根;一个数如果有几个不同的平方根,那么这个数就叫做这几个平方根的被开方数;一个正数和它的平方根之积,等于这个数的平方。

1.3立方根

1.3.1立方根的性质:正数的立方根有两个,它们互为相反数;$0$的立方根是$0$;负数没有立方根。

1.3.2几个关键概念:若一个数的立方等于$a$,那么这个数叫做$a$的立方根或三次方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

第二章:二元一次方程组

2.1二元一次方程组的概念

2.1.1二元一次方程的概念:只含有一个未知数,并且未知数的指数是$1$,一次项系数不是$0$的整式方程叫做二元一次方程。

2.1.2二元一次方程组的引入:含有两个未知数的方程,叫做二元一次方程。含有几个方程,就叫做几个元。含有几个未知数的方程,叫做几元一次方程。

2.1.3二元一次方程组的定义:把几个二元一次方程合在一起,就组成了一个二元一次方程组。

2.2二元一次方程组的解法

2.2.1几个关键概念:能使二元一次方程两边相等的未知数的值叫做二元一次方程的解。

2.2.2几个基本解法:1.代入消元法;2.加减消元法。

2.3实际问题与二元一次方程组

2.3.1用方程组解决实际问题的步骤:1.审题;2.设未知数;3.找出等量关系;4.列出方程组;5.解方程组;6.得出结论。

2.3.2实际问题与二元一次方程组的例子:如工程问题、追及问题、分配问题、行船问题等。

第三章:不等式与不等式组

3.1不等式的概念

3.1.1不等式的定义:用不等号表示大小关系的式子叫做不等式。

3.1.2几个关键概念:小于号、大于号、小于等于号、大于等于号、大于和小于号。

3.2不等式的性质

3.2.1不等式的传递性:如果$a>b$,$b>c$,那么$a>c$。

3.2.2不等式的加法法则:如果$a>b$,$c>0$,那么$ac>bc$。

3.2.3不等式的乘法法则:如果$a>b$,$c>0$,那么$ac>bc$。

3.2.4不等式的除法法则:如果$a>b$,$c<0$,那么$ac

3.2.5不等式的商性质:如果$a>b$,$c>0$,那么$frac{a}{c}>b$。

3.3解一元一次不等式

3.3.1解一元一次不等式的步骤:1.去括号;2.移项;3.合并同类项;4.系数化为$1$。

3.3.2一元一次不等式的特殊解:一元一次不等式的解集满足以下三个条件:1.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;2.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变;3.当不等式的两边都

篇19:初二数学知识点

1.实数

2.代数式

3.方程与方程组

4.一次函数

5.数据的收集与整理

具体内容:

1.实数

平方根,算数平方根,立方根,无理数,实数,相反数,绝对值,有理数,数轴,区间.

2.代数式

代数式,代数式的值,整式,分式,分式方程,不等式,不等式组的解法,二次根式.

3.方程与方程组

方程,一元一次方程的解法,二元一次方程组,解二元一次方程组,解一元一次方程,解一元一次不等式,解一元一次不等式组.

4.一次函数

一次函数,一次函数图象,一次函数的应用.

5.数据的收集与整理

数据的收集,数据的表示.

数学初二上册知识点有哪些

初二政治上册知识点总结

(热门)初二物理知识点总结

(优选)初二物理知识点总结

初中数学知识点总结

本文标题: 初二数学知识点(精选19篇)
链接地址:https://www.dawendou.com/fanwen/qitafanwen/2437081.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《初二数学知识点(精选19篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有