动量守恒定律教学设计(共6篇)
第1篇:动量守恒定律教学设计
《动量守恒定律》教学设计
物理组 梁永
一、教材分析 地位与作用
本节课的内容是全日制普通高级中学物理第二册(人教版)第一章第三节。本节讲述动量守恒定律,它既是本章的核心内容,也是整个高中物理的重点内容。它是在学生学习了动量、冲量和动量定理之后,以动量定理为基础,研究有相互作用的系统在不受外力或所受合外力等于零时所遵循的规律。它是动量定理的深化和延伸,且它的适用范围十分广泛。
动量守恒定律是高中物理阶段继牛顿运动定律、动能定理以及机械能守恒定律之后的又一重要的解决问题的基本工具。动量守恒定律对于宏观物体低速运动适用,对于微观物体高速运动同样适用;不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。因此,动量守恒定律不仅在动力学领域有很大的应用,在日后的物理学领域如原子物理等方面都有着广泛的应用,为解决物理问题的几大主要方法之一。因此,动量守恒定律在教学当中有着非常重要的地位。
二、学情分析
学生在前面的学习当中已经掌握了动量、冲量的相关知识,在学习了动量定理之后,对于研究对象为一个物体的相关现象已经能够做出比较准确的解释,并且学生已经初步具备了动量的观念,为以相对较为复杂的由多个物体构成的系统为研究对象的一类问题做好了知识上的准备。
碰撞、爆炸等问题是生活中比较常见的一类问题,学生对于这部分现象比较感兴趣,理论和实际问题在这部分能够很好地结合在一起。学生在前期的学习和实践当中已经具备了一定的分析能力,为动量守恒定律的推导做好了能力上的准备。
从实验导入,激发学生求知欲,对于这部分的相关知识,学生具备了一定的主动学习意识。
三、教学目标、重点、难点、关键
(一)教学目标
1.知识与技能:理解动量守恒定律的确切含义和表达式,能用动量定理和牛顿第三定律推导出动量守恒定律,掌握动量守恒定律的适用条件。
2.过程与方法:分析、推导并应用动量守恒定律
3.情感态度与价值观:培养学生实事求是的科学态度和严谨务实的学习方法。
(二)重点、难点、关键
重点:动量守恒定律的推导和守恒条件 难点:守恒条件的理解 关键:应用动量定理分析
四、设计理念
在教学活动中,充分体现学生的主体地位,积极调动学生的学习热情,让学生在学习过程当中体会成功的快乐,渗透严谨务实的科学思想;同时,教师发挥自身的主导作用,引导学生在学习探究活动当中找到正确的分析方向,五、教学流程设计 教学方法
分析归纳法、质疑讨论法、多媒体展示 教学流程
(一)引入新课
回顾动量定理的内容和表达式,指出动量定理的研究对象为一个物体。质疑:当物体相互作用时,情况又怎样呢?
(二)新课教学
1、分析教材中实验部分,对比多媒体展示的实验,总结通过实验得到的相关结论。
2、创设物理情景,搭设认知台阶,引导学生利用动量定理和牛顿第三定律推导动量守恒定律的形式。
3、讨论合外力不为零的情形,利用动量定理和牛顿第三定律重新推导,判断系统动量在碰撞前后是否守恒,从而确定动量守恒定律成立的条件。
4、总结动量守恒定律内容
5、介绍动量守恒定律的适用范围
(三)小结
师生共同总结动量守恒定律的内容、条件以及适用范围。
(四)作业P10 练习三(3)(4)
六、板书设计 动量守恒定律
1、内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变
(1)系统:有相互作用的物体通常称为系统(2)系统中各物体之间的相互作用力叫做内力(3)外部其他物体对系统的作用力叫做外力
2、表达式:pp'''12p1p2或pp
3、条件:一个系统不受外力或外力之和为零,系统的总动量保持不变
4、适用范围:(1)小到微观粒子,大到天体
(2)不仅适用于低速运动,也适用于高速运动
第2篇:动量守恒定律教学设计(推荐)
教
学
设
计
稿
辽阳市第二高级中学物理组
李鑫
§ 16.2
动量守恒定律
(一)
一、教学目标
知识技能:
1、理解动量的概念,会计算动量的一维变化
2、理解动量守恒定律及其条件拓宽
3、会应用动量守恒定律解决计算问题
过程与方法: 独立学与合作学 情感态度与价值观:
1、体验探索物理奥秘和创设物理情境的乐趣,培养科学探索和创造精神;
2、体会艺术中的科学,升华爱科学、爱祖国的情感
二、重点、难点
重点
动量和动量守恒定律 难点
动量的变化;动量守恒的条件 三、教法与学法
教法:两先两后,既先学后教,先练后讲。学法:独立学与合作学
四、教学准备
多媒体(展示学案播放动画)、实物展示台(供学生展示用)、学案(课前要求预习)
五、教学过程 引入新课:展示学生学案中对上节知识的回顾引入本节课 进行新课:
1、每个知识点都是先展示学生对学案中知识点的理解,先学后教突破重点。让学生自己小组讨论设计我是大导演里的物理情景并进行展示,先练后讲突破难点。最后由教师进行肯定和补充师生达成共识完成对每个知识点的教学。
2、三个知识点都学习完成后通过一个动画情景引出一道例题进行巩固练习
例题:若老鼠Jerry喷出质量mq = 10g 的气体之后,自己的质量是mJ = 0.5kg,且获得了vJ
= 1m/s 的水平速度,则Jerry喷出的气体相对于地面的速度vq 是多大?
3、让学生亲自动手做两个小实验,通过亲身体验进一步达到突破难点的目的课堂小结:对所学的知识点进行总结 反馈评价:小组讨论,师生交流,反馈信息 布置作业:由一个小游戏引出本节的作业 思考:比较动量和动能
观察:观察或回忆生活中与动量守恒有关的现象或片段 交流;与同学们交流物理情境,共同分析其中的规律 提升:结合实际,估算数据,通过定量计算分析情境的科学性
六、板书设计 §16.2
动 量 守 恒 定 律(一)
一、动量
二、系统、内力和外力
三、动量守恒定律
1、定义式:p=mv
至少
内部
外部
1、内容(略)矢量性 相对性 状态量
两个
施力
施力
2、表达式:
2、单位:kgm/s
内力和外力的区分
p1 + p2 = p1' + p2'
3、动量变化量
依赖于系统的选取
3、条件(略)△p = p'- p = mv'-mv
·矢量性同时性相对性
学 案 设 计
〈我来学学〉§16.2动量守恒定律
(一)
[回顾]A、B碰撞实验中,(填“A”或“B”或“AB系统”)具有的 守恒
[查阅资料]“mv”是什么?“mv”给了你什么印象? [我是大导演]你能导演一场“mv”(一维)变化的情境吗?
[分析研究]说说碰撞实验中,什么情况造成了A和B的mv都改变了,而AB系统的mv却没变?
[我的理论]
1、动量守恒之我论 。
2、表达式
3、说明
[查阅资料][想想说说] [我是大导演]你能导演一场动量守恒的情景吗?
第3篇:动量守恒定律的应用教学设计
物理习题课中的五步教学法
----《动量守恒定律的应用》教学设计
江苏省怀仁中学
张忠一
一、教学目标:
1、知识目标:
应用动量守恒定律处理相互作用的物体的位移变化关系问题
2、能力目标:
培养学生的分析、归纳问题的能力和对知识的“迁移”能力
3、情感目标:
通过小组间的讨论竞赛,培养学生的团结协作精神和集体荣誉感,并让学生感受由困惑到豁然开朗的愉悦。
二、教学方法:
1、启发:动机是指引起和维持个体的活动,并使活动朝向某一目标的内部心理过程和内部动力。人的各种活动是在动机的指引下向着某一目标进行的,而兴趣是人们探究某种事物或从事某种活动的心理倾向,是推动人们认识事物、探求真理的重要动机。教师利用生动有趣的实验、生活中的物理现象和创设物理情境等方式来设疑,从而激发学生的学习兴趣、启发学生解释物理现象,探索物理知识的求知欲。“启”是教学过程中最重要的一种教学方法。
2、阅读:指学生在教师的指导下阅读物理问题,并进行独立思考。在读题的过程中,注重思考两点:第一是物理过程,这是把握问题的整体思路,是选择相关物理知识来处理问题的前提和依据。第二是分析各物理量,其中包括已知的量、待求的量、不变(或相同)的量、隐含的量,这是解决问题的基本思路,也是进一步确定所应用物理规律的方法。
3、议论:指教师组织学生针对阅读过程中出现的问题,利用已有的知识能力所进行的小组议论(宜四人一组)、全班讨论和师生共议。“议”一方面可以使学生加深理解所阅读的内容,另一方面还能启发学生的思维,培养学生的创新意识,促进学生的主动学习,加强学生间的团结协作能力,在讨论过程中教师尽量做到充分调动全体学生思维的积极性,鼓励他们积极思考,主动发言,提出问题。还要求教师具有敏锐的洞察力和良好的调控能力,准确把握讨论的信息,注意收集讨论中出现的带有普遍性的问题。
4、讲评:指学生和教师的讲解。学生分组讨论,选出组长,由组长向全班学生阐述讨论结果,并由其他同学进行补充、完善,这样可以促进学生的思维,锻炼学生的口才,还可以培养学生学习的主动性。教师针对学生在讨论过程中出现的带有普遍性的问题及关键性的问题进行讲解,讲的目的在于启发学生积极思维,帮助学生找出解决问题的方法、规律。
5、练习:指学生在掌握了一定的知识技能的情况下进行的形成性练习,从而进一步巩固所学的知识,练习的方式可以多样化,包括课内练习和课外练习,练习的内容应紧扣所学内容。课堂练习应“小”“精”“活”,有利于启迪学生思维,有利于学生理解所学内容,有利于提高学生的综合能力,有利于培养学生的创新意识和创新能力。课外练习应结合学生的日常生活或结合科学技术的应用,拓展学生的视野和思维。
三、教学内容:
1、引入:
江南水乡,风景秀丽,泛舟河中,其乐无穷。很多学生都坐过小渔船,但他们感到困惑的是:人在船上向前走时,为什么船却向后退?人在船上向前走的距离与船向后的距离又有什么关系呢?
题外话:在这节课之前,利用研究性学习课时间,带领学生到学校东面的小河边(这里渔民很多)去亲自体验这种情景,并分组进行测量记录。
2、投影:
例:静止在水平面上的船长为L,质量为M,一个质量为m的站在船头,当此人由船头走到船尾时,不计水的阻力,人移动的距离是多少?船移动的距离是多少?
学生审题后教师提出问题:
1、人走动是匀速的还是变速的?
2、人走动时与船之间水平方向是否存在力?
3、人走动时船是否运动?
4、若船运动,与人的走动速度关系如何?
5、人移动的距离等于船长L吗?
6、这个问题可能利用什么知识来处理?
将学生分组进行讨论,视回答情况进行积分竞赛。
对于两个物体相互作用,运动情况也相互影响的问题,学生很容易想到可能利用动量守恒定律来处理,但动量中涉及到的只是物体的速度,而题中要求移动的距离。这也是此题的一个“关节”所在,此时教师引导学生考虑速度与距离的关系,学生会想到s=vt,设人的速度为v1行走的距离为s1;船的速度为v2,行走的距离为s2,以人的行走方向为正方向,根据动量守恒定律:
0=mv1+M(-v2)两边同乘以时间t,则
0=mv1t-Mv2t
即 0=ms1-Ms2
学生可能会出现上面这样一个盲目的解题结果,根本没有理解这里v1、v2的意义。这时教师应提醒学生注意:s=vt只对匀速直线运动适用,而人和船的运动状态是个不定量,所以v只能是平均速度。但是动量mv是状态量,而平均速度是过程量,这里又存在矛盾,如何化解呢? 我们可以这样来想:对于一个变速运动的过程,它的平均速度比最大速度小,比最小速度大,所以一定会等于此过程中某一时刻的瞬时速度的大小,假设这一时刻人和船的速度分别为v1、v2,根据动量守恒定律:
0=mv1+M(—v2)
即
0=mv1+M(-v2)
那么 0=mv1t+M(-v2t)所以 0=ms1-Ms2
①
本题还有一个难点所在:人移动的距离和船移动的距离有什么关系?对于这一点,学生经过亲身经历已有感性认识,通过讨论会解决的。借助画图来分析:
由图易知:s1+s2=L
② 联立①②得
Ms1=L Mmms2=L Mm讨论:末状态会出现如下图所示情况吗?为什么?
(不可能,因为人的速度方向向右,末位置应在出发点的右侧。)
课堂练习1:静止在水面的船长为L,质量为M,一个质量为m,长为l的小车从船头由静止开向船尾时,不计水的阻力,则车移动的距离是多少?船移动的距离是多少?
本题类似于“队伍过桥”问题,与例题的区别在于车相对于船比人相对
Mm于船少走l,所以s1=(L—l)
s2=(L—l)
MmMm
课堂练习2:静止在水面上的船长为b,斜边长为a,质量为M,一个质量为m的小球从船头由静止沿斜面滚向船尾时,不计水的阻力,则球移动的距离是多少?船移动的距离是多少?
系统水平方向上动量守恒。先考虑小球
M水平方向上移动的距离s1=b,再考
Mm虑沿斜面方向上移动的距离
s`1=s(ab)
mb Mm课外练习:静止在水面上的船长为L,一人站立船头,手持一枪,船尾有一靶,子弹不能穿透靶。已知枪中有n子弹,每发子弹的质量为m,船、人、s2=枪和靶的总质量为M,问:子弹发射完后,船移动的距离是多少?
每发射一颗子弹,系统的动量守恒。在发射n发子弹的过程中,系统的动量也守恒,并可以等效地看成n发子弹一齐发射出去。
四、教学说明:
1、动量为状态量,对应的速度应为瞬时速度。所以动量守恒定律中的“总动量保持不变”指的应是系统的初、末两个时刻的总动量相等,或系统在整个过程中任意两个时刻的总动量相等。若相互作用的两个物体作用前均静止,则相互作用的过程中系统的平均动量也守恒,利用这一点我们解决不少涉及位移的问题。
2、动量守恒定律的公式中各速度都要相对同一惯性参照系。地球及相对地球静止或相对地球匀速直线运动的物体即为惯性系。所以在应用动量守恒定律研究地面上物体的运动时,一般以地球作参照系。
第4篇:动量守恒定律教案
动量守恒定律
一、动量守恒定律
1.定律内容:一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.
说明:(1)动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来.
(2)相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.2.动量守恒定律的适用条件
(1)系统不受外力或系统所受外力的合力为零.
(2)系统所受外力的合力虽不为零,但F内》F外,亦即外力作用于系统中的物体导致的动量的改变较内力作用所导致的动量改变小得多,则此时可忽略外力作用,系统动量近似守恒.例如:碰撞中的摩擦力和空中爆炸时的重力,较相互作用的内力小的多,可忽略不计.(3)系统所受合外力虽不为零,但系统在某一方向所受合力为零,则系统此方向的动量守恒,例图68,光滑水平面的小车和小球所构成的系统,在小球由小车顶端滚下的过程中,系统水平方向的动量守恒.3.动量守恒的数学表述形式:
(1)p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量.
(2)Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)(3)Δp1=-Δp2
即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.
4.应用动量守恒定律的解题步骤 (1)分析题意,明确研究对象(系统).
(2)对系统内的物体进行受力分析,明确内力、外力,判断是否满足动量守恒的条件.(3)明确研究系统的相互作用过程,确定过程的初、末状态,对一维相互作用问题,先规定正方向,再确认各状态物体的动量或动量表述.
(4)利用守恒定律列方程,代入已知量求解.(5)依据求解结果,按题目的要求回答问题.
二、碰撞
1.碰撞是指物体间相互作用时间极短,而相互作用力很大的现象.
在碰撞过程中,系统内物体相互作用的内力一般远大于外力,故碰撞中的动量守恒,按碰撞前后物体的动量是否在一条直线区分,有正碰和斜碰,中学物理只研究正碰(正碰即两物体质心的连线与碰撞前后的速度都在同一直线上).
2.按碰撞过程中动能的损失情况区分,碰撞可分为二种:
a.弹性碰撞:碰撞前后系统的总动能不变,对两个物体组成的系统满足: m1v1+m2v2=m1v1′+m2v2′
1/2m1v1+1/2m2v2′=1/2m1v1′+1/2m2v2′ 两式联立可得: 2
2
2v1′=
v2′=
b.完全非弹性碰撞,该碰撞中动能的损失最大,对两个物体组成的系统满足: m1v1+m2v2=(m1+m2)v
c.非弹性碰撞,碰撞的动能介于前两者碰撞之间.
三、反冲现象
系统在内力作用下,当一部分向某一方向的动量发生变化时,剩余部分沿相反方向的动量发生同样大小变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.若系统由两部分组成,且相互作用前总动量为零,则0=m1v1+m2v2,v1、v2方向相反
动量守恒定律
教案示例
一、教学目标
1.知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。
2.学会沿同一直线相互作用的两个物体的动量守恒定律的推导。3.知道动量守恒定律是自然界普遍适用的基本规律之一。
二、重点、难点分析
1.重点是动量守恒定律及其守恒条件的判定。2.难点是动量守恒定律的矢量性。
三、教具
1.气垫导轨、光门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣)。
2.计算机(程序已输入)。
四、教学过程
(一)引入新课
前面已经学习了动量定理,下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何?
(二)教学过程设计
1.以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。画图:
设想水平桌面上有两个匀速运动的球,它们的质量分别是m1和m2,速度分别是v1和v2,而且v1>v2。则它们的总动量(动量的矢量和)p=p1+p2=m1v1+m2v2。经过一定时间m1追上m2,并与之发生碰撞,设碰后二者的速度分别为v1'和v2',此时它们的动量的矢量和,即总动量p'=p1'+p2'=m1v1'+m2v2'。
板书:p=p1+p2=m1v1+m2v2 p'=p1'+p2'=m1v1'+m2v2'
下面从动量定理和牛顿第三定律出发讨论p和p'有什么关系。设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是t。根据动量定理,m1球受到的冲量是F1t=m1v1'-m1v1;m2球受到的冲量是
F2t=m2v2'-m2v2。
根据牛顿第三定律,F1和F2大小相等,方向相反,即F1t=(m2v2'-m2v2)整理后可得
板书:m1v1'+m2v2'=m1v1+m2v2 或写成p1'+p2'=p1+p2
就是p'=p 这表明两球碰撞前后系统的总动量是相等的。分析得到上述结论的条件:
两球碰撞时除了它们相互间的作用力(这是系统的内力)外,还受到各自的重力和支持力的作用,但它们彼此平衡.桌面与两球间的滚动摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。2.结论:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。这个结论叫做动量守恒定律。
做此结论时引导学生阅读课文。并板书。
∑F外=0时
p'=p 3.利用气垫导轨上两滑块相撞过程演示动量守恒的规律。(1)两滑块弹性对撞(将弹簧圈卡在一个滑块上对撞)
光电门测定滑块m1和m2第一次(碰撞前)通过A、B光门的时间t1和t2以及第二次(碰撞后)通过光门的时间t1'和t2'。光电计时器记录下这四
个时间。
将t
1、t2和t1'、t2'输入计算机,由编好的程序计算出v
1、v2和v1'、v2'。将已测出的滑块质量m1和m2输入计算机,进一步计算出碰撞前后的动量p
1、p2和p1'、p2'以及前后的总动量p和p'。
由此演示出动量守恒。
注意:在此演示过程中必须向学生说明动量和动量守恒的矢量性问题。因为v1和v2以及v1'和v2'方向均相反,所以p1+p2实际上是|p1|-|p2|=0,同理p1'+p2'实际上是|p1'|-|p2'|。
(2)两滑块完全非弹性碰撞(将弹簧圈取下,两滑块相对面各安装尼龙子母扣)
为简单明了起见,可让滑块m2静止在两光电门之间不动(p2=0),滑块m1通过光门A后与滑块m2相撞,二者粘合在一起后通过光门B。
光门A测出碰前m1通过A时的时间t,光门B测出碰后m1+m2通过B时的时间t'。将t和t'输出计算机,计算出p1和p1'+p2'以及碰前的总动量p(=p1)和碰后的总动量p'。由此验证在完全非弹性碰撞中动量守恒。
(3)两滑块反弹(将尼龙拉扣换下,两滑块间挤压一弹簧片)将两滑块置于两光电门中间,二者间挤压一弯成∩形的弹簧片(铜片)。同时松开两手,钢簧片将两滑块弹开分别通过光电门A和B,测定出时间t1和t2。
将t1和t2输入计算机,计算出v1和v2以及p1和p2。
引导学生认识到弹开前系统的总动量p0=0,弹开后系统的总动量pt=|p1|-|p2|=0。总动量守恒,其数值为零。
4.例题
甲、乙两物体沿同一直线相向运动,甲的速度是3m/s,乙物体的速度是1m/s。碰撞后甲、乙两物体都沿各自原方向的反方向运动,速度的大小都是2m/s。求甲、乙两物体的质量之比是多少?
引导学生分析:对甲、乙两物体组成的系统来说,由于其不受外力,所以系统的动量守恒,即碰撞前后的总动量大小、方向均一样。
由于动量是矢量,具有方向性,在讨论动量守恒时必须注意到其方向性。为此首先规定一个正方向,然后在此基础上进行研究。
板书解题过程,并边讲边写。板书:
讲解:规定甲物体初速度方向为正方向。则v1=+3m/s,v2=1m/s。碰后v1'=-2m/s,v2'=2m/s 根据动量守恒定律应有m1v1+m2v2=m1v1'+m2v2'移项整理后可得m1比m2为
代入数值后可得m1/m2=3/5,即甲、乙两物体的质量比为3∶5。5.练习题
质量为30kg的小孩以8m/s的水平速度跳上一辆静止在水平轨道上的平板车,已知平板车的质量是80kg,求小孩跳上车后他们共同的速度。
分析:对于小孩和平板车系统,由于车轮和轨道间的滚动摩擦很小,可以不予考虑,所以可以认为系统不受外力,即对人、车系统动量守恒。
板书解题过程:
跳上车前系统的总动量
p=mv 跳上车后系统的总动量
p'=(m+M)V 由动量守恒定律有mv=(m+M)V 解得
6.小结
(1)动量守恒的条件:系统不受外力或合外力为零时系统的动量守恒。
(2)动量守恒定律适用的范围:适用于两个或两个以上物体组成的系统。动量守恒定律是自然界普遍适用的基本规律,对高速或低速运动的物体系统,对宏观或微观系统它都是适用的。
第5篇:动量守恒定律 教案
《动量守恒定律》
——教案
刘希乾
三维目标:
(一)知识与技能
1、理解动量守恒定律的确切含义和表达式
2、知道定律的适用条件和适用范围;
3、掌握运用动量守恒定律的一般步骤
(二)过程与方法
知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
(三)情感、态度与价值观
学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。教学重点:
1、动量的概念和动量守恒定律。
2、运用动量守恒定律的一般步骤。
教学难点:动量的变化和动量守恒的条件、应用。引入新课:
通过以前的学习,我们已经会描述一些简单的典型的运动。知道速度、位移、加速度都是用来描述物体运动的物理量,而通过上一节课的学习,我们又认识到动量也可以描述物体的运动状态,而且我们通过动能定理也建立起了力与动量的联系,知道动量是力对时间积累的效果。正如力在空间中的积累存在着自然普遍定则一样,力对时间的积累是否也存在着某种守恒的普适关系? 进行新课: 【小组讨论交流】
一、牛顿第一定律的内容及实质
内容:一切物体总有保持静止或匀速直线运动状态的性质,除非有外力迫使它改变这一状态。
实质:力不是维持物体运动状态的原因,而是改变物体运动状态的原因。
二、牛顿第二定律的内容及实质
内容:物体的加速度与作用力成正比,与物体的质量成反比。实质:力是产生加速度的原因,加速度改变了物体的运动状态。
三、牛顿第三定律的内容及实质
内容:物体间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上。
实质:物体间的相互作用总是等大反向。
四、如果是两个物体,如何区分它们之间的相互作用和其它物体对它们的作用力呢?
系统:可以把两个或两个以上物体看做一个力学系统。内力:系统内物体间作用力称为内力。
外力:外界物体对系统内物体的作用力称为外力。教师总结:
我们把两个物体看作一个系统,那么两个物体间的相互作用就属于系统的内力,外界其它物体对系统中任何一物体的作用就是系统所受的外力。根据牛顿运动定律可知:不论外力还是内力都会改变物体的运动状态,而内力起的作用就像人民内部矛盾,外力起的作用则为外在矛盾。前者可以相互抵消达到和谐,但是后者必然破坏这种和谐关系。而现实生活中诸如此类的守恒随处可见。
比如:甲乙各有500元现金,相互交换甲乙两者共有财富值不变。但甲又别处得到500元,这必然使两者共有财富值增加。相反,丙强行从甲手中拿走500元,两者共有财富值较少。
再有:一个绝热系统中两个物体相互吸热放热,系统温度必然升高;而外界对系统加热,系统温度必然升高。
与我们所学更近的例子:比如机械能守恒定律。系统中仅有保守力做功,机械能守恒。但是若有外力对系统内任何物体做功,这种守恒必然打破。【创设情境,理论推理】
现实生活中,这种守恒随处可见。为此我们创设一个物理情境:
光滑水平桌面上有一质量为m1的物体以速度v1向右运动,质量为m2的物体以速度v2向右运动。且v1>v2,那么经过一定时间后,必然追上m1且发生碰撞。设碰撞后m1的速度为v1’,m2速度为v2’
碰撞过程中m2对m1的作用力为F1,m1对m2的作用力为F2 【教师引导,学生自主推理:】
两物体各自所受重力和支持力虽为外力,但是合力为零,不改变物体的的运动状态。F1和F2是两物体组成的系统内力。
推导1:根据牛顿第二定律,碰撞过程中两球的加速度分别为:
F1F2a1,a2
m1m2根据牛顿第三定律,F1与F2的大小相等方向相反,即
F1F2
所以:m1am2a2
碰撞时两小球之间的作用时间很-短,用t表示。这样加速度与速度前后的关系就是
'v2v2v1'v1a1,a2
tt把加速度的表达式带入m1am2a2,移项后得到
''m1v1m2v2m1v1m2v
2(1)
推导2:根据牛顿第三定律,F1与F2的大小相等方向相反,即
F1F2
碰撞时两小球之间的作用时间很短,用t表示。取向右为正,则系统内内力冲量关系为
F1tF2t
根据动量定理可知:
'F1tm1v1'm1v1,F2tm2v2m2v2
那么
''(m1v1m1v1)m2v2m2v2
整理得到
''m1v1m2v2m1v1m2v2
(1)
【教师总结】
我们通过不同的策略,得出相同的结论(1)。而且的实验探究中我们也得到了一样的结论。实验是检验理论的唯一标准。可见,物体相互碰撞过程中确实存在着这种守恒关系。
(1)式的物理意义是:两球碰撞前的动量之和等于碰撞后的动量之和。因为碰撞过程中的任意时刻牛顿第三定律、动量定理的结论都是成立的,因此(1)式对过程中的任意两时刻的状态都是适用的,也就是说系统在整个过程中一直保持不变。因此我们可以说这个过程中动量是守恒的。
历史上通过几代物理学家在实验上和理论上的分析、探索与斗争,人们在18世纪形成这样的共识:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。这就是动量守恒定律。【教师指导,学生总结】
动量守恒定律的条件:(1)系统不受外力,(2)系统所受外力矢量和为零 动量守恒定律的表达式:
(1)动量定理指出,系统的总动量保持不变。那么碰撞前和碰撞后系统的动量应该相等。即pp'
(2)如果是相互作用的两个物体组成的系统,总动量不变。那么系统内一个物体增加的动量跟另一个物体减少的动量也相等。即p1p2(3)系统总动量不变,那就是说对于系统动量变化量应该为零。即p0(4)相互作用的两个物体组成的系统,作用前动量之和等于作用后的动量之
'和。即m1v1m2v2m1v1'm2v2
板书设计
一、系统 内力和外力
1、系统:
2、内力:
3、外力:
二、动量守恒定律
1、推导过程
2、内容
3、成立条件
4、表达式 课堂小结
本节课通过理论推导得出了和实验相同的结论。推导过程中我们体会到了科学的严密性,体会到物理来源于生活,是解决生活中实际问题的科学。通过对动量守恒定律的理解归纳总结出动量守恒定律不同的表达式,进一步理解了这一普遍真确的守恒定律。作业设计
第6篇:动量守恒定律教案
第四节
动量守恒定律的应用
教学目标
1.学会分析动量守恒的条件。
2.学会选择正方向,化一维矢量运算为代数运算。
3.会应用动量守恒定律解决碰撞、反冲等物体相互作用的问题(仅限于一维情况),知道应用动量守恒定律解决实际问题的基本思路和方法。重点、难点分析
1.应用动量守恒定律解决实际问题的基本思路和方法是本节重点。
2.难点是矢量性问题与参照系的选择对初学者感到不适应。教
具
1.碰撞球系统(两球和多球);
2.反冲小车。教学过程
本节是继动量守恒定律理论课之后的习题课。
1.讨论动量守恒的基本条件
例1.在光滑水平面上有一个弹簧振子系统,如图所示,两振子的质量分别为
和
讨论此系统在振动时动量是否守恒?
分析:由于水平面上无摩擦,故振动系统不受外力(竖直方向重力与支持力平衡),所以此系统振动时动量守恒,即向左的动量与向右的动量大小相等。
例2.承上题,但水平地面不光滑,与两振子的动摩擦因数相同,讨论m1=m2和m1≠m2
两种情况下振动系统的动全是否守恒。
分析:m1和m2所受摩擦力分别为f1m1g和f1m2g。由于振动时两振子的运动方
向总是相反的,所以f1和f2的方向总是相反的。
板书画图:
对m1和m2振动系统来说合外力际运算时为
板书:
F外f1f2,但注意是矢量合。实F外m1gm2g
显然,若m1=m2,则
F外0,则动量守恒;
若 m1≠m2,则
F外0,则动量不守恒。
向学生提出问题:
(l)m1=m2时动量守恒,那么动量是多少?
(2)m1≠m2时动量不守恒,那么振动情况可能是怎样的?
与学生共同分析:
(l)m1=m2时动量守恒,系统的总动量为零。开始时(释放振子时)p=0,此后振动时,当p1和p2均不为零时,它们的大小是相等的,但方向是相反的,所以总动量仍为零。
数学表达式可写成m1v1m2v2
(2)m1≠m2时。其方向取决于
F外(m1m2)g。其方向取决于m1和m2的大小以及运动方向。比如m1>m2,一开始m1向右(m2向左)运动,结果系统所受合外力
F外方向向左(f1向左,f2向有,而且f1>f2)。结果是在前半个周期里整个系统一边振动一边向左移动。
进一步提出问题:
在m1=m2的情况下,振动系统的动量守恒,其机械能是否守恒? 分析:振动是动能和弹性势能间的能量转化。但由于有摩擦存在,在动能和弹性势能往复转化的过程中势必有一部分能量变为热损耗,直至把全部原有的机械能都转化为热,振动停止。所以虽然动量守恒(p=0),但机械能不守恒。(从振动到不振动)
2.学习设置正方向,变一维矢量运算为代数运算
例 3.抛出的手雷在最高点时水平速度为10m/s,这时突然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
分析:手雷在空中爆炸时所受合外力应是它受到的重力G=(m1+m2)g,可见系统的动量并不守恒。但在水平方向上可以认为系统不受外力,所以在水平方向上动量是守恒的。
强调:正是由于动量是矢量,所以动量守恒定律可在某个方向上应用。那么手雷在以10m/s飞行时空气阻力(水平方向)是不是应该考虑呢?(上述问题学生可能会提出,若学生不提出,教师应向学生提出此问题。)
一般说当v=10m/s时空气阻力是应考虑,但爆炸力(内力)比这一阻力大的多,所以这一瞬间空气阻力可以不计。即当内力远大于外力时,外力可以不计,系统的动量近似守恒。
板书:
F内F外时pp 解题过程:
设手雷原飞行方向为正方向,则v010m/s的速度 v150m/s。m2的速度方向不清,暂设为正方向。
板书:
设原飞行方向为正方向,则v010m/s,v150m/s;m1=0.3kg,m2=0.2kg
系统动量守恒:
(m1m2)v0m1v1m2v2
v2
(m1m2)v0m1v1(0.30.2)100.350m/s50m/sm20.2此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反。
例4.机关枪重8kg,射出的子弹质量为20克,若子弹的出口速度是1000m/s,则机枪的后退速度是多少?
分析:在水平方向火药的爆炸力远大于此瞬间机枪受的外力(枪手的依托力),故可认为在水平方向动量守恒。即子弹向前的动量等于机枪向后的动量,总动量维持“零”值不变。
板书:
设子弹速度v,质量m;机枪后退速度v,质量M。则由动量守恒有
MVmv
Vmv0.021000m/s2.5m/s M8小结:上述两例都属于“反冲”和“爆炸”一类的问题,其特点是F内F外,系统近似动量守恒。
演示实验:反冲小车实验
点燃酒精,将水烧成蒸汽,气压增大后将试管塞弹出,与此同时,小车后退。
与爆炸和反冲一类问题相似的还有碰撞类问题。演示小球碰撞(两个)实验。
说明在碰撞时水平方向外力为零(竖直方向有向心力),因此水平方向动量守恒。
结论:碰撞时两球交换动量(mAmB),系统的总动量保持不变。例5.讨论质量为mA的球以速度v0去碰撞静止的质量为mB的球后,两球的速度各是多少?设碰撞过程中没有能量损失,水平面光滑。
设A球的初速度v0的方向为正方向。由动量守恒和能量守恒可列出下述方程:
mAv0mAvAmBvB
①
111222mAv0mAvAmBvB
② 222解方程①和②可以得到 vAmAmBv0
mAmB2mAv0
mAmBvB 引导学生讨论:
(1)由vB表达式可知vB恒大于零,即B球肯定是向前运动的,这与生活中观察到的各种现象是吻合的。
(2)由vA表达式可知当mAmB时,mA0,即碰后A球依然向前滚动,不过速度已比原来小了vBmAmB1当mAmB时,mAmBv00,即碰后A球反弹,且一般情况下速度也小于v0了。当mAmB,vA0,vB0,这就是刚才看到的实验,即A、B两球互换动量的情形。
(3)讨论极端情形:若mB时,vAv0,即原速反弹;而
vB0,即几乎不动。这就好像是生活中的小皮球撞墙的情形。在热学部分中气体分子与器壁碰撞的模型就属于这种情形。
(4)由于vA总是小于v0的,所以通过碰撞可以使一个物体减速,在核反应堆中利用中子与碳原子(石墨或重水)的碰撞将快中子变为慢中子。
3.动量守恒定律是对同一个惯性参照系成立的。例6 质量为M的平板车静止在水平路面上,车与路面间的摩擦不计。质量为m的人从车的左端走到右端,已知车长为L,求在此期间车行的行距离?
分析:由动量守恒定律可知人向右的动量应等于车向左的动量,即
mv=MV 用位移与时间的比表示速度应有
LxxM ttm解得 xL
Mm m讨论:这里容易发生的错误是vL,结果得到x=L t
动量守恒定律中的各个速度必须是对同一个惯性参照系而言的速度。
而将v写成L是在小车参照系中的速度,不是对地面参照系而言的速度,以t致发生上述错误。
4.小结:应用动量守恒定律时必须注意:(1)所研究的系统是否动量守恒。
(2)所研究的系统是否在某一方向上动量守恒。
(3)所研究的系统是否满足F内F外的条件,从而可以近似地认为动量守恒。
(4)列出动量守恒式时注意所有的速度都是对同一个惯性参照系的。(5)一般情形下应先规定一个正方向,以此来确定各个速度的方向(即以代数计算代替一维矢量计算)。
教学效果分析:
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《动量守恒定律教学设计(共6篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
