圆柱体体积教学设计(共19篇)
第1篇:圆柱体的体积教学设计
《圆柱体体积》教学设计
教学内容:数学人教新课标版《圆柱的体积》 教学目标:
1、知识技能:
理解圆柱体体积公式的推导过程,掌握计算公式. 会运用公式计算圆柱的体积,解决生活中的实际问题。
2、过程与方法:
通过学生的小组合作学习,充分利用资源、学具等去探究推导圆柱体体积的计算公式。
3、情感态度价值观:
充分利用资源、学具,通过小组合作学习以及采用与课情、班情相匹配的激励机制,激励和培养学生的学习兴趣,求知欲望。培养学生动手操作、实验、观察等良好的学习态度和良好的科学素养。
教具、学具准备:
1、教学资源:多媒体课件(自制课件)、圆柱体教具。
2、学具:圆柱体模型(土豆或者萝卜)教学重点:
圆柱体体积推导过程以及圆柱体体积的计算. 教学难点:
理解圆柱体体积公式的推导过程.
教学过程:
一、复习准备
(一)情境导入
师手拿彩泥,把彩泥从一朵玫瑰花,揉成一个小圆球,让学生观察,并从数学角度描述彩泥的变化过程。(变化过程中,形状变了,体积没变)师:今天我们就来继续讨论关于体积的问题。
(二)、师口头提问
1、什么叫体积?我们学过哪些几何图形的体积?(长方体和正方体的体积)
2、长方体的体积跟什么有关系?计算公式及字母表达式是什么?正方体的体积呢?计算公式和字母表达式是什么?
3、长方体、正方体体积计算的统一公式是什么? (课件出示:长方体、正方体的体积公式)
(设计意图:通过回顾旧知识,为学生学习新知垫定知识知识基础。)
(三)切入课题
课件出示:想一想,你有什么方法可以求出圆柱体的体积?
同学们,我们今天就来一起研究圆柱的体积,(板书课题:圆柱体的体积)现在同学们就开始开动脑筋想一想,如果给你一个圆柱体,你想用什么样的方法求出它的体积。
学生汇报自己的想法,教师给予鼓励。这个方法固然好,但现实生活中的圆柱体有大有小,有轻有重,这个方法就有局限性了。如果有一个公式来计算圆柱体的体积那就方便多了。
(设计意图:让学生充分发挥想像,用自己想用的方法求自己圆柱体的体
积,在这一过程中充分体现学生的主体地位。)
二、探究新知
师:圆柱体由哪几部分组成?
1、猜一猜:圆柱体体积的大小跟什么有关系?
先请同学们猜想一下圆柱体的体积跟什么有关系,然后用以下三组圆柱来验证同学们的猜想是否下确。
第一组圆柱(同底等高,体积相等。),第二组圆柱(同底不等高,高长的,体积就大); 第三组圆柱(等高不同底,底面积大的体积就大)。
师:说一说这三组圆柱,每组中两个圆柱的体积的大小。同时推测跟圆柱体的大小有关系的条件。
2、让学生总结,圆柱体的体积跟什么有关系?(跟圆柱体的底面积和高有关系)
生汇报完后,师利用课件出示圆柱的底面与高。教师给予鼓励:看来同学们的猜想是正确的。
(设计意图:让学生经历猜想——验证的过程。充分调动学生思维,体验成功的喜悦)
3、小组合作探究圆柱体的体积公式。
(1)、师引导学生利用转化思想,想办法把圆柱体转化成我们已经学过的几何形体。
师:既然圆柱的体积跟它的底面积和高有关系,到底有怎样的关系呢!说到这啊,同学们可以回忆一下,我们在推导平行四边形、三角形、梯
形、圆形的面积时都用到了转化法,把图形转化成已经学过的图形再进行推导。看看圆柱的体积公式能不能用转化的方法推导呢?仔细观察圆柱体,想想从哪里可以找到突破口?
预设:学生有可能想到把底面的圆形转化成近似的长方形,会出现一个什么样的几何体呢?师顺水推舟,让学生动手试一试。
(带学生一起回顾圆面积的推导过程,并用多媒体课件演示其推导过程。)
(2).学生利用圆柱体土豆切一切,拼一拼。
然后小组展示自己的操作成果,并介绍自己的操作过程。师课件演示切拼的过程(3).启发学生思考、讨论:
圆柱体切开后可以拼成一个什么形体?(近似的长方体)通过刚才的操作你发现了什么? 并把你的发现记录在表格中。预设填表内容:
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。总结出这一点后师总结就像我们的彩泥一样,形状变了,体积不变。②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。③近似长方体的高就是圆柱的高,没有变化。④平均分的份数越多,拼起来的形体越近似于长方体.
⑤平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方
体的长就越近似于一条线段,这样整个形体就越近似于长方体. 6.学生根据动手操作的过程试推导圆柱体的体积公式。(1)学生分组讨论:圆柱体的体积怎样计算?(2)用字母表示圆柱的体积公式.
(师给予肯定,并板书圆柱体体积的推导依据和公式)小组汇报讨论结果,师课件出示圆柱体体积公式。
三、课后训练
1、基础训练:
一个圆柱形木料,底面积是75平方厘米,长是90厘米,它的体积是多少?
2、变式练习:一根圆柱体木头的体积是2.4立方米,底面积是40平方分米,求它的高是多少米?
3、拓展训练:只列式,并写出相应的公式。
4、动手实践:求圆柱体饮料罐的体积。
5、能力训练,总结直柱体的体积计算公式。
四、课堂总结:生总结自己的收获。
五、课下作业:你想知道学校圆柱体水塔的体积吗?想办法测一测。
第2篇:“圆柱体体积的计算”教学设计
圆柱的体积
---------------------公式的推导
县第二中学
张科荣
教学内容:
人教版P25的内容和例5及“做一做”习题。教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:
掌握和运用圆柱体积计算公式 教学难点:
圆柱体积公式的推导过程 教学过程:
一、情境引入
1、昨晚,李老师准备给孩子买一个蛋糕,到了蛋糕店发现有两款蛋糕比较不错,且价格相同。此时,他犹豫了,买哪一款划算?你能帮助选一选吗?
r=15cm
h=10 cm
a=30cm b=25 cm c=9 cm 要解决这个问题,你打算怎么办? 预设:分别求出蛋糕的体积,再比较大小。
师:长方体、正方体的体积都可以怎样来计算?
长方体的体积=底面积×高
我们会计算长方体的体积,关键是圆柱的体积怎么计算?
二、自主探究(材料:圆柱体积木、圆柱体插拼教学具、课件)
1、教师出示一个圆柱体积木,这个玩具的体积你们会算吗? 出示:自学指导提示单 学习目标:(1).探索并掌握圆柱的体积计算公式。
(2).能运用公式计算 圆柱的体积,并解决实际问题。自学提示
(一): (1)、以前学过的长方体和正方体的体积,对我们研究圆柱体体积有帮助吗?
你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?
小组合作交流:怎样将圆柱体转化成一个长方体呢? 切拼成的长方体与圆柱体有什么关系? 怎样计算切拼成的长方体体积?
自学提示
(二):
(1).把圆柱体切拼成近似的长方体,长方体的底面积等于圆柱的(),长方体的高等于圆柱的()。
(2).长方体的前、后两面面积之和,就是圆柱的(),长方体的上、下两个面就是圆柱的(),长方体的左右两个面的面积都等于圆柱的()与圆柱的()的乘积。
(3).原来圆柱的体积()切拼后长方体的体积。原来圆柱的表面积()切拼后长方体的表面积。(填大于、等于或小于)
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)演示操作:(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。
(2)这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?
(3)电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)
3、组织讨论
(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现?
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
追问:圆柱体的体积计算公式我们是怎样推导出来的?
4、小结:
要想求出一个圆柱的体积,需要知道什么条件?
5、学生自学第25页例5上面的一段话:用字母表示公式。 学生反馈自学情况:
v=sh
三、巩固发展(材料:圆柱体、球体积木、直尺、带水的量杯、实物展示台、计算器等)
1、再出示
r=15cm
h=10 cm
a=30cm b=25 cm c=9 cm a学生理解独立计算比较。b、学生演示过程。
2、完成第25页的“做一做”第一题。
集体订正,说一说圆柱体的体积还可以怎样算?
3、完成第25页“做一做”第二题(只列式,不计算)。
4、动手练一练: 一个圆柱形的粮囤,从里面量底面半径是3米,高是2米。这个粮囤能装稻谷多少立方米?如果每立方米稻谷约重600千克,这个粮囤装的稻谷大约有多少吨?(得数保留整数)
5、思维提升:用一个棱长是6分米的正方体,做一个最大的圆柱,圆柱的体积是多少?
四、全课小结
这节课你学会了什么?你是怎样学会的? 课外研究:求一个不规则石头的体积
第3篇:圆柱体的体积教学设计与反思
《圆柱体的体积》教学设计和教学反思
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点: 让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
教学难点: 让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。
教学方法:操作法、推理法、讲授法
教学前思:
这部分内容是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。例4安排第一步教学要达到三个目的,一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
练习七的第1题巩固圆柱的体积公式,第2-4题解决实际问题的过程中进一步理解和掌握圆柱的体积公式,感受数学知识的应用价值。第5题动手操作,把所学知识应用到实际生活,第6-9题,提高应用公式的能力,体会底面积、侧面积、表面积和容积概念及计算中的联系和区别,思考题进一步培养学生的空间想象能力和综合应用数学知识解决实际问题的能力。
教学过程:
一、复习引新。
我们以前学过哪些立体图形?
生答:长方体和正方体。
它们的体积是怎么求的?
长方体:长×宽×高,正方体:棱长×棱长×棱长。
二、教学例4。
1、出示长方体和正方体。
它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?
生答:体积=底面积×高,所以长方体和正方体的体积相等。
2、出示圆柱。
猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
生猜测:相等。
究竟如何,今天我们就一起来研究圆柱的体积。
板书课题:圆柱的体积。
问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)
生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。
依据是圆可以转化成长方形计算面积。
3、出示课件。
回顾圆的面积计算公式是怎样推导的。
4、回顾了圆的面积公式推导,你有什么启发?
生答:把圆柱转化成长方体计算体积。
5、动手操作。
请2位同学上台用教具来演示,边演示边讲解。
把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。
多请几组同学上台讲解,完善语言。
提问:为什么用“近似”这个词?
6、教师演示课件。
把圆柱拼成了一个近似的长方体。
7、如果把圆柱的底面平均分成32份、64份„„切开后拼成的物体会有什么变化?
生答:拼成的物体越来越接近长方体。
追问:为什么?
生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。
师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?
出示讨论题。
1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?
2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?
3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?
板书:
长方体体积
底面积
高
圆柱体积
底面积
高
9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。
10、用字母如何表示。
11、出示例4。
现在你知道圆柱的体积与长方体、正方体的体积相等了吗?
为什么?
生答:体积相等,都是用底面积×高。
V=sh
三、巩固练习。
1、出示练习七第一题。
学生直接把答案填写在表中。
提问:你是根据什么填写的?
2、练一练。
这两题,你打算怎么计算?
生答:不知道底面积,要先算出底面积,再乘高。
3.14×2²×5 = 62.8(平方厘米)
3.14×(6÷2)²×8 = 226.08(平方厘米)
3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?
问:这道题和前面做的有什么不同?怎么计算?
生答:这是求容积的。所以数据是从里面量的。
4、练习七第2题。
观察下面的3个杯子,你能看出哪个杯子的饮料多?
请学生猜一猜。
请学生列出三道算式。
(1)3.14×(8÷2)²×4
(2)3.14×(6÷2)²×7
(3)3.14×(5÷2)²×10
问:你能不求出结果直接比较出大小吗?
生答:第一个杯子的饮料多。
5、练习七第三题。
学生独立解答。
指名说说是怎样算的?
3.14×3²×5×1= 141.3(千克)
141.3千克<150千克
答:这个保温茶桶不能盛150千克水。
四、总结。
今天这节课你学到了什么?
给孩子留下思考的痕迹
----《圆柱的体积》教学反思
《圆柱的体积》这部分内容是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。自己感觉在这部分内容的教学中应注重学生的探索过程,在充分积累学习经验的基础上得出圆柱体积的计算公式。但在实际的操作过程中却发现了很多的问题。
1.学生并不能结合之前圆面积计算公式的探索方法来探索圆柱的体积计算方法。
2.并不是每一个学生都能理解圆柱的体积与切割后长方体体积之间的关系。
【反思】
一、让操作更详实,留下思考的痕迹
《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系 数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握
通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的体积的学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法.
第4篇:《用圆柱体体积解决问题》教学设计
《用圆柱的体积解决问题》教学设计
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集怡宝矿泉水瓶,装有适量清水,水高度10厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫 1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
(二)探索实践,体验转化过程 1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:根据这一瓶没有装满水的矿泉水瓶,你能提一个数学问题吗? 预设1:瓶子有多少水?(瓶子里水的体积)预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
1 2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
3.小组合作,测量计算。
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!(1)出示:
一个内直径是()的瓶子里,水的高度是(),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是()。这个瓶子的容积是多少?
(2)四人小组合作: A.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。B.组内互相说一说:倒置前后哪两部分的体积不变?
2 矿泉水瓶的容积=()+()。
C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。教师巡查,点名同学板演。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为555毫升,基本符合。5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
6.出示课本第27页例7
(三)练习巩固,学以致用 1.数学书P27做一做。
(1)学生独立思考,解决问题。(2)把自己的想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。3.14×(6÷2)2×10=282.6(毫升)。
(四)全课总结,提升认识
教师:回忆一下,今天这节课有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。
五、板书设计
用圆柱的体积解决问题
(1)瓶子里有多少水?(2)喝了多少水?
3.14×(6÷2)2×10
3.14×(6÷2)2×9
=3.14×9×10
=3.14×9×9
=282.6(毫升)=254.34(毫升)
(3)瓶子的容积是多少?
=282.6+254.34 ≈537(毫升)
六、布置作业
完成练习册练习五。
第5篇:《用圆柱体体积解决问题》教学设计
《用圆柱的体积解决问题》教学设计
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为
6、7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫 1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程 1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
1 预设2:喝了多少水?(也就是瓶子的空气部分。)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
【设计意图】课本中的例题呈现如下,例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。
3.小组合作,测量计算。(矿泉水瓶内直径为6cm)
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!(1)课件出示:
一个内直径是()的瓶子里,水的高度是(),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是()。这个瓶子的容积是多少?(测量时取整厘米数)
(2)四人小组合作: A.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。B.组内互相说一说:倒置前后哪两部分的体积不变? 矿泉水瓶的容积=()+()。
C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。
4.交流反馈。
教师巡查,选择矿泉水瓶中原有水高度分别
6、7、8、9厘米的同学板演。 瓶中水高度为6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13 =3.14×9×(6+13)≈537(毫升)。
瓶中水高度为7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)≈537(毫升)。
瓶中水高度为8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11 =3.14×9×(8+11)≈537(毫升)。
瓶中水高度为9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10 =3.14×9×(9+10)≈537(毫升)。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
【设计意图】通过回顾解决问题的过程,帮助学生把本环节的数学活动经验进行总结,引导学生在后续的学习中碰到相似的问题也可同样利用转化的思想来解决。
(三)练习巩固,学以致用 1.数学书P27做一做。
(1)学生独立思考,解决问题。(2)把自己的想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
4 将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。3.14×(6÷2)2×10=282.6(毫升)。
2.输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?
(1)请学生计算,并反馈订正。(2)反馈要点:
整个吊瓶容积=图像中空气部分的容积+还剩下液体的体积。根据图象,可以得出在第12分钟吊瓶有80毫升是空的。剩下液体的体积=100-2.5×12=70(毫升)。即整个吊瓶容积=80+70=150(毫升)。
【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。
3.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?
(2)讨论方法:
A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。
B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。
(3)用自己认可的方法计算,并进行反馈。
5 解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(4)反馈小结:可以有不同的转化方法来解决问题。
【设计意图】不满足于一种方法的转化,展示多种方法,开拓学生的思维。
(四)全课总结,提升认识
教师:回忆一下,今天这节课有什么收获?
教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。
【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性。
6 《用圆柱的体积解决问题》教学设计
教学内容:课本第27页例7及相应的做一做,练习五的第10——11题 课前分析:
一、学生已有的基础:大部分学生学会了怎样求圆柱的体积(容积),并能规范的解决圆柱的实际问题。
二、教学目标:
(1)使学生通过经历发现和分析、解决问题的完整过程,掌握不规则物体体积的计算方法。
(2)培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步渗透“转化”的数学思想。
三、教学重难点
重点:通过分析、解决问题,掌握不规则物体体积的计算方法。
难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。
四、设计原则
尊重学生已有的起点,把可以自己先解决的问题放在预习中完成,给课堂留出交流的时间,留出练习的时间。
教学过程:
一、复习导入,揭题明标 1. 课件出示:
问:圆柱的体积怎么计算?计算公式有哪些?体积和容积有什么区别?
2、揭示课题: 这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。用圆柱的体积解决问题。
二、预习交流,自主探究
1、出示预习单,独立整理,准备交流;
2、小组交流预习情况,形成初步共识。
活动目标:交流各自的预习情况,组内安排好汇报顺序。活动形式:以小组为单位,根据预习导航进行交流 活动要求:(1)组长组织,有序完成各自的交流;
(2)并汇总各种情况,做好记录,准备汇报展示。
三、展示汇报,分析解答
1、小组上台带领学习例7; 课件出示例7(1)阅读与理解: A、找出信息和问题
信息:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。
7 问题:这个瓶子的容积是多少? B、质疑、解疑。
这个瓶子是一个完整的圆柱吗?怎样求出它的容积? 预设:可以转化成以前学过的图形---圆柱。C、台上学生实物演示。
用两个相同的饮料瓶,内装同样多的水进行演示。(2)分析与解答。
A.怎样计算这个瓶子的容积?
找出数量关系式:瓶子的容积=(水的体积)+(空气的体积)B.写出完整的解答过程:
3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)C、其它小组补充评价。
四、回顾反思,巩固应用
1、回顾反思 :回顾解决这个问题的方法和过程,你有哪些收获?
预设: 可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。
也可以像计算梨的体积那样用排水法,来求不规则物体的体积。
2、教师总结:
这是一种转化的思想,属于等积变形(转化前后图形之间体积相等)。这种转化的方法在我们解决一些实际问题时常常会用到。
3.巩固应用:
过关题★:(预习时让学生完成,课上直接请学生说出数量关系式和解题思路。)(1)数学书P27做一做。
(2)P29练习五第10题
易考题★★:(学生在预习导航上独立完成,指名学生上台讲解,教师及时点拨。)(1)输液100毫升,每分钟输2.5毫升,请观察第12分钟时吊瓶图像中的数据。问整个吊瓶的容积是多少毫升?
(2)P29练习五第11题
8 拓展题★★★:(根据时间情况而定,请优生上台讲解思路)
如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
板 书设 计
用圆柱的体积解决问题
阅读与理解:内直径是8CM,水的高度是7CM,倒放无水部分是 18CM。
这个瓶子的容积是多少?
分析与解答: 瓶子的容积= 水的体积 + 空气的体积 3.14×(8÷2)2×7+3.14×(8÷2)2×18 =3.14×16×(7+18)=1256(cm3)=1256(ml)
回顾与反思 : 体积不变
第6篇:圆柱体体积教案
圆柱体的体积
目标:
1、使学生知道圆柱体体积公式的推导过程,理解圆柱体体积的计算公式,并能正确应用公式计算圆柱体体积。
2、再次培养学生利用转化的思想探索新知的意识。
重点:圆柱体的体积公式的推导。
难点:圆柱体体积公式的推导
教具和学具:教师准备课件一个,投影仪,学生准备圆柱形的橡皮1~2块。
重点包含要素的分析:
1、让学生能从知识间或图形的联系的角度想到把圆柱体转化为长方体来研究它的体积。逐渐培养学生科学的猜想能力。
2、体积公式的推导过程是学生重点掌握的内容,并且掌握转化前后两种图形各个量间的关系,也是灵活运用公式的关键。
与其它教学重点的联系:掌握V=SH是解决有关求圆柱体的体积或容积基础,同时也是下一步学习圆锥体体积计算的基础。
突出重点的策略:
1、回忆圆形面积的推导过程,利用媒体课件演示把一个个完全一样的圆形堆成圆柱体的过程来启发学生猜想:圆柱体能切拼成我们学过的什么图形呢?激发学生的思维。
2、学生有前面的推测,让学生小组合作用实物(学生自备圆柱体形状的橡皮)操作,验证猜想,探索体积的计算方法。
3、补充一个已知R求V的例题进一步突出求V必须先求S。突出V=SH的基础性。
教学过程:
一、复习引入:
1、体积的概念
2、我们学过求哪些几何图形的体积?怎样求?
(为学习圆柱体的体积的意义做迁移,并为学生原有知识结构填充新知做好准备)
3、同学们知道什么是圆柱体的体积吗?
4、想知道怎样计算圆柱体的体积吗?这节课我们一起来探索圆柱体的计算方法。-----出课题
二、新课探索:
1、;以前我们所研究过的几何图形面积、体积的计算方法时,使用最多的是什么方法?
如:圆的面积公式是怎样得来的呢?请看多媒体课件演示过程。接着请同学们仔细观察(课件演示把一个个完全一样的圆堆成一个圆柱体)能否也利用转化的思想把圆柱体转化成学过的几何图形?
2、转化成什么图形,小组讨论。(猜想)
3、汇报猜想的结果。
4、动手实践:把圆柱体切拼成近似的长方体。
5、思考讨论:转化后的长方体与原来的圆柱体各个部分有什么联系?
6、汇报,全班交流。
长方体的体积=圆柱体的体积
长方体的高=圆柱体的高
长方体的底面积=圆柱体的底面积
7、根据以上过程请在小组内对照图形讲述圆柱体体积的计算公式。汇报如下:
长方体的体积=底面积×高
圆柱体的体积=底面积×高
V=Sh
8小结:正方体、长方体、圆柱体的体积的计算方法
V=Sh
三、公式的应用:
1、教学例题4:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(1)带领学生画图。(培养学生会画图帮助分析的能力)
(2)让学生讲方法,尝试列式。教师板书过程。
2、补充例题:已知一个圆柱形的茶叶筒,底面半径是5厘米,这个茶叶筒的体积是多少?
学生讨论方法汇报,教师板书解题过程:
3、小结:对比以上两个题的解题过程,你觉得计算圆柱体的体积一定要根据条件先计算什么呢?(明确只要不是直接给出底面积,那就必须先由条件求出底面积。并补充V=лr2×h)
四、巩固练习:38页
1、2
五、全课总结:今天你学到了什么?
第7篇:圆柱体表面积和体积复习教案教学设计
圆柱体表面积和体积复习教案教学设计(北师大版六年级下册)教学内容:
教科书第98页例4及做一做。教学目标:
1.学生在整理、复习的过程中,进一步熟悉圆柱体的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。2.在学生对圆柱体的认识和理解的基础上,进一步培养空间观念。
3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点:
1.灵活运用圆柱体的表面积和体积的计算方法解决实际问题。 2.圆柱体表面积和体积计算方法之间的联系。教学准备:课件 教 学 过 程
一、回忆旧知,揭示课题一
1、谈话揭示课题。 师:昨天我们对圆柱体的认识进行了整理和复习,今天我们来走入圆柱体的表面积和体积的整理与复习。(板书:圆柱体表面积和体积的整理与复习)
2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法)
二、回顾整理、建构网络
1、圆柱体的表面积和体积的意义。
(1)提问:什么是圆柱体的表面积?你能举例说明吗?(2)提问:什么是圆柱体的体积?你能举例说明吗?
(3)教师小结:圆柱体的表面积就是指一个圆柱体所有的面的面积总和,圆柱体的体积就是指一个圆柱体所占空间的大小。
2、小组合作,整理――圆柱体的表面积和体积的计算方法。(1)独立整理。
刚才我们已经对圆柱体的表面积和体积的意义进行了整理。下面,请同学们用自己喜欢的方式,将对圆柱体的计算方法进行整理。
(2)整理好的同学请在小组中说一说你是怎样进行整理的?
3、汇报展示,交流评价
哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价)
4、归纳总结,升华提高 (1)公式推导。
刚才,我们已经对圆柱体表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?
(2)教师小结:从圆柱体的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(3)整理知识间的内在联系 ①同学们。我们已经对圆柱体的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些圆柱体的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。②反馈学生交流情况,明确其内在联系:
a、圆柱体的表面积计算公式的内在联系:圆柱体的侧面积就是长方形的面积,它的表面积都可以用侧面积加两个底面积;
b、圆柱体的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。
随着学生的回答,展示课件
三、重点复习、强化提高 同学们,我们对圆柱体的表面积和体积的意义和计算方法进行了整理和复习,而整理复习的最终目的就是要运用。(板书:运用)运用相关知识去解决问题。
1、判断。(对的打“√”,错误的打“×”)① 正方体的棱长扩大2倍,体积就扩大6倍。()
② 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。()
③ 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。()
④ 一个正方体与一个圆柱体的底面周长相等,高也相等。那么,它们的体积也相等。()⑤ 圆柱和圆锥等底等高,则圆锥的体积比圆柱少,圆柱的体积比圆锥多200%。()
2、选择正确答案的序号填在括号里。
① 把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到()个小正方体。A、3 B、9 C、12 D、27 ② 一个圆锥和一个圆柱的体积相等,底面积也相等。这个圆锥的高是圆柱的高的()。A、3倍 B、C、D、③ 把两个棱长5厘米的正方体木块粘合成一个长方体,这个长方体的表面积是(),体积是()。
A、250平方厘米 B、200平方厘米 C、250立方厘米 D、200立方厘米
④ 一个圆柱的底面半径是2厘米,高是2厘米,列式为(3.14×2×2×2)平方厘米,是求()。
A、侧面积 B、表面积 C、体积 D、容积
⑤ 681.2用进一法取近似值,得数保留整十数约是()。A、681 B、680 C、690 D、700
3、解决问题。
我朋友买了一套新房,他告诉了我他家客厅的一些数据(长6米,宽4米,高3米)。请同学们帮老师算一算装修时所需的部分材料。
(1)客厅准备用边长是(100×100)平方厘米规格的方砖铺地面,需要多少块?
(2)准备粉刷客厅的四周和顶面,除去门、电视墙等10平方米不粉刷外,实际粉刷的面积是多少平方米?
(3)朋友装修新房时,所选的木料是直径40厘米,长是3米的圆木自己加工,大约需要5根。求装修新房时所需木料的体积?
(板书:认清图形、单位对应、明白问题、认真计算、反复检验)
四、自主简评、完善提高 自主检测
(一)仔细思考、明辨是非
1、一个正方体的棱长扩大2倍,它的体积就会扩大8倍。()
2、长方体比长方形大。()
3、油桶的容积就是油桶的体积()
4、一个正方体和一个圆柱体的底面周长和高都相等,那么它们的体积也相等。()
5、把一个圆柱削成最大的圆锥,圆锥的体积是削去部分的一半。()(二)你能解决下面生活中的问题吗? 一个圆柱形水池,直径是20米,深2米.①这个水池占地面积是多少? ③在池内四周和池底抹一层水泥,水泥面的面积是多少平方米?(三)活用知识、解决问题
一个水池的排水管内直径是2分米,水在管内的流速是每秒4分米。一小时可以排水多少升?(四)我是生活小能手
一个装满稻谷的粮囤,高2米,它的上面是圆锥形,下面是圆柱形,底面半径是3米,圆柱和圆锥一样高,这囤稻谷大约有多少立方米?(得数保留整数)评价完善
1、通过这节课的整理和复习,你最大的收获是什么?
2、关于圆柱体的表面积和体积你还有什么问题? 板书设计:
“圆柱体的表面积和体积”的整理和复习(图形、单位、问题、计算、检验)意义 应用 计算方法 作业设计: 基础: 1.填一填:
(1)如果我想给房屋进行粉刷,需要刷()个面?()面不刷?
(2)甲乙两人分别利用一张长20厘米,宽15厘米的纸用不同的方法围成一个圆柱体,那么,围成的圆柱()一定相等。
(3)把一个圆柱在平坦的桌面上滚动,那滚动的路线是一条()。
(4)把一个边长1分米的正方形纸围成一个最大的圆柱体,这个圆柱体的体积是()。2.选择题。(将错误的答案划掉)。
(1)一只铁皮水桶能装水多少生升是求水桶的(侧面积、表面积、容积、体积)。(2)做一只圆柱体的油桶至少要用多少铁皮,是求油桶的(侧面积、表面积、容积、体积)。(3)做一节圆柱形的铁皮通风管,要用多少铁皮,是求通风管的(侧面积、表面积、容积、体积)。
(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)。3.判一判:
(1)两个圆柱体侧面积相等,它们的体积一定相等。()
(2)两个圆柱体底面积和高分别相等,它们的体积一定相等。()(3)圆柱体底面积和高都扩2倍,体积就扩4倍。()(4)一个圆柱底面周长和高都扩2倍,体积就扩4倍。()
(5)一个正方体的棱长是6厘米,它的表面积和体积相等。()
(6)容器的容积和容器的体积大小不一样。()(7)两个圆柱体的侧面积相等,那么,它们的底面周长一定相等。()(8)一个圆柱体,它的高缩小2倍,底面半径扩大2倍,体积不变。()
(9)一段圆柱体木头,把它制成一个最大的圆锥体,削去部分的体积是圆柱体积的2/3,是圆锥体积的2倍。综合:
4.只列式、不计算:
(1)我们学校的一间教室长9米,宽6米,高3米。在四周墙壁和顶部抹水泥,扣除门窗以及黑板面积共20平方米后,需抹水泥的面积是多少平方米?
(2)李师傅要做一个无盖的圆柱形铁皮水桶,高6分米,底面半径4分米,做这个水桶至少要用铁皮多少平方分米?(得数保留整十平方分米)
(3)大厅里有十根圆柱形柱子,它的底面直径是10分米,高是6米,在这些柱子的表面涂漆,1千克能涂2平方米,共需油漆多少千克?
(4)一个圆柱的侧面展开图是一个边长6.28厘米的正方形,这个圆柱的表面积是多少?(5)将两个棱长是10厘米的正方体拼成一个长方体,这个长方体的表面积是多少? 拓展提升: 5.解决问题
(1)把一个棱长6分米的正方体木块削成最大的圆柱形,要削去多少立方分米?
(2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。这块石头的体积是多少立方厘米?(3)一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶的容积是多少毫升来吗?(4)一个圆柱体,底面半径3分米,切拼成一个近似的长方体后,表面积增加了60平方分米,这个圆柱体的高是多少分米?(5)一个长方体,底面是个正方形,高每减少2厘米,长方体的表面积就减少32平方厘米,这个长方体的的底面边长是多少?
(6)一根圆柱体木料,长2米,直径4分米,要把它等分成二份,表面积增加了多少?(7)有一个近似圆锥的小麦堆,测得其底面周长是12.56米,高1.5米。如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?将这些小麦装入底面积是3.14平方米的圆柱形粮囤里能装多高?
(8)一间教室长10米,宽8米,高4米,门窗面积21.5平方米,粉刷教室的四壁和顶面要用水泥多少千克?(按每平方米用水泥15千克计算)
第8篇:“圆柱体体积的计算”教学设计及思考
教学内容:
苏教版《九年义务教育六年制小学教科书数学》(第十二册)第8-9页圆柱体积公式的推导、例4,“练一练”及补充习题。教学目标:
1、知识技能
结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:
掌握和运用圆柱体积计算公式 教学难点:
圆柱体积公式的推导过程 教学过程:
一、情境引入(材料:长方体、正方体积木)
1、昨晚,老师去拜访了一位同学,他现在是某玩具厂厂长,他们厂新近开发了一种积木玩具,正准备上网宣传。他委托我在同学们中搞一个调研,问问你们想从网上了解这种产品的哪些信息呢?
(制作材料,使用方法,注意事项,大小规格等)
2、小组长从1号材料袋中取出长方体和正方体积木,让小组学生采集有关数据,并分别口算出它们的体积。
学生代表汇报,并说说是怎样的?根据的是什么? 师:长方体、正方体的体积都可以怎样来计算?
(板书:长方体的体积=底面积×高)
二、自主探究(材料:圆柱体积木、圆柱体插拼教学具、课件)
1、教师出示一个圆柱体积木,这个玩具的体积你们会算吗?
2、提示:
(1)以前学过的长方体和正方体的体积,对我们研究圆柱体体积有帮助吗?(2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?
3、小组合作交流:怎样将圆柱体转化成一个长方体呢?
4、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
5、演示操作
(1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。(2)这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?(3)电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)
6、组织讨论
(1)圆柱体转化成一个长方体后,什么变了,什么没有变?你有什么发现?(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
追问:圆柱体的体积计算公式我们是怎样推导出来的?
7、小结:
要想求出一个圆柱的体积,需要知道什么条件?
8、学生自学第8页例4上面的一段话:用字母表示公式。 学生反馈自学情况:
v=sh
三、巩固发展(材料:圆柱体、球体积木、直尺、半径4厘米的带水的量杯、实物展示台、计算器等)
1、出示第8页例4,学生理解题意,独立完成。
集体订正,说一说这样列式的根据是什么?
2、完成第9页的“试一试”。
集体订正,说一说圆柱体的体积还可以怎样算?
3、完成第9页“练一练”中的两道题(只列式,不计算)。
4、把2号材料袋中的直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?(此题结论不唯一)
5、各小组打开3号材料袋,先采集数据然后计算圆柱体积木的体积。(可采集底面半径、直径和周长来分别计算)
6、这是一个球体积木,利用今天学的知识,你有办法算出它的体积吗?(把球体积木放进盛着水的量杯中,把测量球的体积转化为测量圆柱的体积)
(以上题目借助计算器计算)
四、全课小结
这节课你学会了什么?你是怎样学会的?
师:我也代表那位厂长谢谢同学们,他们厂一定会设计出更多更好玩的玩具奉献给同学们。
设计思考:
(一)让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,先复习了长方体、正方体体积的计算,然后顺势提出“如何计算圆柱体的体积”这一全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,使学生经历了“做数学”的过程。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。在体验“生活数学”的过程中,学生理解与感受到了数学的魅力,获得了个人生存与发展的必需的数学。
(二)鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动之中。在本节课中,我让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。数学的价值不在技能而在思想,在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用了“对我们有帮助吗?”“你有什么发现?”“你是怎样想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学,而不是去模仿复制别人的数学。因为我想:自己的,才是有价值的。
(三)鼓励解决问题策略的多样化
《课程标准》指出:鼓励解决问题策略的多样化,是因为施教,促进每一个学生充分发展的有效途径。本节课在自主探究阶段,我鼓励学生用多种方法把圆柱体转化成长方体。在巩固发展阶段,我设计了两道开放性的习题,其中计算圆柱体积木体积,可以从测量圆柱的底面半径、直径、周长等不同角度求解;计算旋转直尺所形成的圆柱体积一题,旋转轴不同得到的圆柱体是完全不一样的,这体现了解题方法的多样性。这样安排从表面上看,似乎只是学生的空间观念、基本技能得到了培养;但深层次地分析,可以发现学生的思维得到了发展,创新精神、实践能力得到了提高。这些具有多样化解决策略的开放性的问题能尽可能地保证每个学生在掌握数学基本技能的前提下,不同的人在数学上得到不同的发展。
第9篇:《圆柱体的体积》教案
圆柱的体积教案
--------永安小学
文显成教学内容
西师版六年级数学下册第34、35页。 教学目标
1.知识与能力目标:
结合具体的情境和操作活动,进一步理解体积的含义。
探索并掌握圆柱体体积的计算方法,能正确的计算圆柱的体积,并会解决一些简单的实际问题。
2.过程与方法目标:教学时,充分的利用教具和学具,引导学生通过观察、操作和交流探索新知。
3.情感态度与价值目标:体会类比、转化、化曲为直的数学思想,初步发展推理能力。 重、难点与关键
1.重点:圆柱体积和应用。 2.难点:推导圆柱体积公式的过程。
3.关键:引导学生经历圆柱体积公式的探索过程,体会化曲为直的数学思想。 教学准备
有关推导圆柱体积公式的教具和学具8套 教学方法
直观演示与与学具操作法 教学过程
(一)创设情景引入课题
师:教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?
(操作方法:应用一根细线拴住这个圆柱,然后提着线慢慢放入水中。)
师:“能用一句话说说什么是圆柱的体积吗?” 板书课题:圆柱的体积
(二)探索新知
1.探索圆柱体积与那些因素有关。
出示3个大小不同的圆柱体(同底等高、同底不等高、等高不等底)。师:你能判断哪一个的体积大吗?
师:要比较两个圆柱体的体积你有什么好办法?(学生想到将圆柱体放进水中,比较哪个水面升得高。)
让学生运用这样的方法自己比较等高不等底、等底不等高和等底等高的三个圆柱的体积,并将实验结果填入实验报告中。(操作步骤:先将基准圆柱放入水中,记录好水位上升了多少,再将与之等高不等底的圆柱放入水中,记录好上升水位,最后再将与基准圆柱等底不等高的圆柱放入水中,记录好水位上升多少。同时强调注意小组合作、分配时间。)
学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。
师:明确圆柱的体积的大小与它的底面积和高有关。2.大胆猜想、感知公式。
师:设疑,如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想计算圆柱的体积。
学生想到计算圆柱的体积。引导学生回忆长方体、正方体的体积公式和圆的面积公式的推导过程。
师:要计算圆柱的体积,依据学过的知识,你可以做出怎样的假设? 学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。
3.直观演示、验证猜想、得出结论。
师:请同学们仔细观看老师的这个演示实验。(课件出示)
通过实验可以看出圆柱的底面等于拼成后的近似长方体的底面,圆柱的高等于与近似长方体的高,所以圆柱的体积就等于底面积乘以高。
板书:长方体体积=底面积×高 ↓
↓
↓ 圆柱的体积=底面积×高
师:用字母表示应该怎么表示?指名回答,引导学生得出以下计算公式:
V=S
底面
h 要求圆柱的体积应该知道什么条件?如果知道圆柱的底面直径和高,怎样求圆柱的体积?如果知道圆柱的底面周长和高,怎样计算圆柱的体积?(要求:学生用字母表示出来。)
指名回答后,老师小结:求圆柱的体积,如果没有直接告诉底面积,要先求底面半径,再求底面积,最后求圆柱的体积。
4.运用公式、解决问题。 出示例题3(1)获取信息、明确问题。
师:根据这幅情景图你获得了那些信息?
指名回答,引导学生明确题中所提供的信息,明确所提出的问题。重点引导学生认识:要求这根柱子的体积要先求这根柱子的半径,再求圆柱的底面积,最后求圆柱的体积。(2)独立解决问题
让学生独立解决,并与同桌说一说自己的想法。(3)合作交流
指名板书,学生可能会板书如下
3.14÷3.14÷2=0.5(米)3.14×0.5×4 =3.14×0.25×4 =3.14×1 =3.14(立方米)答:这根柱子的体积是3.14立方米。
巩固练习
求下列圆柱的体积
1、S=25m2,h=4m2
2、d=8dm , h=5dm
3、r=2m , h=2m 拓展练习
机械厂要把一个棱长为10厘米正方体铁块,做成一个最大的圆柱体螺丝,削去部分的体积是多少?
小结
这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决
第10篇:圆柱体的体积教案
《圆柱体的体积》教案
一、教学目标
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
二、教材的重点和难点
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
三、教学方法
1. 直观演示,操作发现
2. 巧设疑问,体现两“主”
3. 运用迁移,深化提高
四、说教学过程
(一)复习旧知识,为引入新知识作准备
师:同学们,我们学习了长方体和正方体这两种立体图形的体积,现在我们来回忆一下它们的计算公式(出示幻灯片1)
师:谁来说说长方体的计算公式?
生:长方体的体积=长×宽×高
师:对,长方体的体积=长×宽×高(出示公式0 师:那正方体呢?
生:正方体的体积=棱长×棱长×棱长
师:很好,正方体的体积=棱长×棱长×棱长(出示公式)师:它们还有一个统一的公式,大家一起来说说它们的统一公式 生:长方体或正方体的体积=底面积×高
师:对,长方体或正方体的体积=底面积×高(出示公式)师:用字母表示 生:v=sh 师:非常好,同学们,最近我们学了新的立体图形圆柱体,它也占有一定的空间,大家一定很感兴趣,怎样求出圆柱体的体积呢?这就是我们这节课要探索的问题(板书课题)
(二)、探求新知
师:大家请看,我们知道圆柱的上、下两个底面是圆形,谁来说说圆的面积公式?(手拿教具)生:S=∏r师:对吗?生:对
师:很好,圆的面积S=∏r,在学习圆的面积时,我们是把圆分成16个相等的扇形,然后拼出一个近似的长方形。现在,我们把圆柱的底面也分成16个相等的扇形,然后按照这些扇形沿着圆柱的高,把圆柱切开,这样就得到了16块体积相等的立体图形,老师这里有几个教具,大家动手来拼一拼,看看你们发现了什么?大家分成四组(分教具)
学生开始分组拼,然后讨论,师巡视(大约3分钟左右)2 2
师:大家都讨论好了吗?(拍手示意)生:好了
师:现在,有同学们来说说,你们发现了什么? 生:我们拼成了一个长方体 师:同学们,还有不同意见吗? 生:我们发现它不是拼成了一个长方体 师:不是拼成一个长方体?为什么呢? 生:因为它的长是曲线的师:好,我们来看一下,大家请看(手拿教具)它的长是不是一条曲线呢? 生:是
师:对,所以说拼成的立体图形应该是一个近似的长方体。师:大家请看大屏幕(出示幻灯片2)
这是16等分拼成的近似长方体,它的长是曲线的;
这是32等分拼成的近似长方体,它会比较接近长方体(出示幻灯片)
这是64等分拼成的近似长方体,(出示幻灯片)也就是说拼成的等分越多,它就越接近长方体 师:大家还有别的发现吗?
第11篇:圆柱体体积练习教案
2016-2017学年度第二学期 句容市××片六年级数学下册教案
§2-5《圆柱的体积》教案(练习)
主 备:宗和杰 主备研讨人:蔡永祥 严兵 宗和杰 审核人:许 娟 个案修改人: 个案修改审核人: 个案修改审核时间:
教学内容:教科书第17-18页4——9题。教学目标: 1.通过练习,进一步掌握圆柱体积的计算方法,能准确计算圆柱体积。2.能解决与圆柱体积计算相关的简单实际问题。
3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。 教学重点:进一步掌握圆柱体积的计算方法,能准确计算圆柱体积。教学难点:能解决与圆柱体积计算相关的简单实际问题。教学过程:
一、温故预习。 1.填空:(1)把圆柱体切拼成一个近似的长方体后,长方体的底面积等于圆柱的(),长方体的高等于圆柱的(),长方体的体积等于圆柱的()。因为长方体的体积=(),所以圆柱的体积=(),用字母表示是()。2.求下面各圆柱体的体积。(只列式不计算)①底面积是9.42平方分米,高5分米 ②底面直径是8厘米,高5厘米 ③底面周长是6.28分米,高10分米 学生独立完成,指名汇报,集体评价、订正。
二、基本练习。
1.一个圆柱的底面半径是2分米,高5分米,求它的: ①底面周长 ②底面积 ③侧面积 ④表面积 ⑤体积
引导学生对照手中的实物模型小组里说一说方法和过程。2.P17 第4题
(1)引导学生看图明确要求哪个杯里饮料最多,应看哪个杯里饮料的体积最大。
1 2016-2017学年度第二学期 句容市××片六年级数学下册教案
(2)要求学生猜一猜结果。(3)学生独立列出计算。
(4)汇报、讨论结果。引导学生思考:怎样灵活的比较计算结果?
3、结合学生生活经验引导学生讨论:这道题让我们求的是什么?怎样列式计算?应注意什么?
4、学生独立完成,然后交流方法。
小结两种方法:①先算出50枚1元硬币的体积,再算1枚1元硬币的体积;②先算出1枚1元硬币的厚度,再算出1枚1元硬币的体积。
三、综合练习。 1.对比练习
①一个圆柱的体积是62.8立方分米,高是5分米,底面积是多少? ②圆柱的体积是50.24立方分米,底面直径是4分米,高是多少分米? ③圆柱的体积是12.56立方分米,底面周长62.8厘米,高是多少分米? 这三道题有什么共同点?解题方法和思路各是什么?引导学生列出综合算式,不计算。
2.一个圆柱形钢材,底面直径和高都是4分米,已知每立方分米钢重7.8千克,这块圆柱体钢重多少千克? 引导学生讨论:要求这块圆柱体钢的重量,先要求出什么?怎样列式? 3.一个圆柱的侧面积是4710平方厘米,高15厘米,它的底面半径是多少?体积是多少? 引导学生结合实物模型指一指、说一说根据侧面积和高这两个条件怎样求出底面半径。
4.探讨:(P18页第7题)
把一张长5厘米,宽4厘米的长方形纸分别绕它的长和宽旋转一周,(如下图),形成两个圆柱。
2 2016-2017学年度第二学期 句容市××片六年级数学下册教案
注:出示第一个图,第二个图让学生想像后画出来。
哪个圆柱的体积大,先估一估。再列出算式,灵活计算、比较。
四、全课小结。
(1)怎样求圆柱的体积? V=Sh=πr²h=π(d÷2)²h
(2)在解决求圆柱体积实际问题中应注意些什么?
五、当堂检测。
1.求体积。(1)底面直径8cm,高10cm;(2)底面半径5cm,高8cm。(3)底面周长18.84dm,高5dm。
2.有一个圆柱形蓄水池,底面半径2米,池深20分米,现往池内注入1.5米深的水,求注入多少立方米的水?
3.一个圆柱形水桶,底面直径40厘米,桶高50厘米,若每升水重1千克,这个桶最多能装水多少千克
第12篇:圆柱体教学设计
《圆柱的体积》教学设计
教学目标
(一)认知目标:
1、理解和掌握圆柱体积的计算公式。
2、会应用公式计算圆柱的体积,并解决实际问题。
(二)能力目标:
1、培养学生的空间观念及有序的观察、分析、综合、比较、抽象概括的能力。
2、培养学生的迁移类推能力和动手操作能力。
(三)情意目标:渗透知识间相互“转化”的思想及节约意识。 教学重点:
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。教学难点:
理解圆柱体积计算公式的推导过程。教具:
圆柱体转化成长方体模型;电脑课件等。教学过程:
一、复习回顾
1、师:同学们,我们一起来回忆一下,什么叫做物体的体积?常用的体积单位有哪些?(板书:体积)
2、课件呈现底面积和高都相等的长方体、正方体和圆柱的直观图。 提问:这几种几何体的体积你都会求吗?你会求其中哪些几何体的体积?
二、创设情境,提出问题
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。(课件显示)
如果要求圆柱形水泥柱子的体积,还能用刚才那样的方法吗?那怎样求圆柱的体积呢?我们要寻求一种更好的办法来解决!今天这节课,我们一起来研究圆柱的体积。(板书:圆柱的体积)
三、自主探索,合作交流
1、观察比较,建立猜想。
(课件出示底面积和高都相等的长方体、正方体和圆柱)
引导学生观察所出示的三个几何体,提问:
(1)这三个几何体的底面积和高都相等,它们的体积有什么关系?(2)长方体和正方体的体积一定相等吗?为什么?(3)圆柱的体积与长方体、正方体的体积可能相等吗?(4)小组讨论,并猜想圆柱体的体积计算公式。
2、汇报交流:
教师对学生的交流适当启发、点评,使学生意识到圆柱的体积与长方体、正方体的体积可能相等,也就是都可能等于底面积乘高。
3、实验操作,验证猜想。
引导学生实验操作:分组合作把圆柱切、拼成近似的长方体,并讨论以下问题:
(1)圆柱体通过切割、拼凑后,转化为近似的长方体,什么变了?什么没变?(2)拼成的近似长方体的体积与原来的圆柱体积有什么关系?(3)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(4)拼成的近似长方体的高与原来的圆柱的高有什么关系?(5)圆柱的体积计算公式是什么?用字母如何表示?
4、汇报交流:
(1)请学生说说是怎样把圆柱体转变成近似的长方体的。
(2)课件演示拼、凑的过程,同时(将圆柱底面等分成32份、64份……),让学生明确:底面分成的扇形越多,拼成的立体图形就越接近于长方体。(3)依次解决上面三个问题。
① 圆柱体通过切割、拼凑后,转化为近似的长方体,形状变了,表面积变了;体积不变。(板书:长方体的体积=圆柱的体积)②拼成的近似长方体的体积和原来的圆柱的体积相等 ③拼成的近似的长方体的底面积等于圆柱的底面积 ④拼成的近似的长方体的高就是圆柱的高。⑤因为 长方体的体积 = 底面积 × 高,所以 圆柱的体积 = 底面积 × 高
字母公式是 V柱 = S h(板书)
5、回顾圆柱体积的推导过程。(同桌互相说一说)
三、实际应用
1、基础练习
要求圆柱体积,必须知道哪些条件?
如果已知底面积和高,你们会求水泥柱子的体积吗?
例一:已知一根柱子的底面积为12.56平方米,高为5米。你能算出它的体积吗?
2、变式练习:
如果分别给了圆柱底面的半径、直径,周长,又都给了高,你们会求圆柱的体积吗? 课件出示:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积式多少升?
(2)一根圆柱形铁棒,底面周长是12.56厘米,长时100厘米,它的体积是多少?
3、实际应用
(1)一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?
(2)一个圆柱形玻璃鱼缸,里面装水,水面高35分米,鱼缸里放入一块石头后,水面升高到45分米,如果这个鱼缸的底面积是25平方分米,这块石头的体积是多少?
四、小结:
(1)谈谈这节课你有哪些收获。(2)解题时需要注意那些方面? 今天经过大家的共同努力,我们把生活中的问题转化成数学问题,联想已有的知识经验,寻找方法,归纳结论,解决了问题。这种学习的方法将会使我们终生受益。
五、课后拓展
布置作业:如果圆柱、正方体和长方体的底面周长和高都相等,谁的体积最大?
六、板书设计:
圆柱的体积
长方体体积 = 底面积 × 高
▏▏
▏▏
▏▏
圆柱体体积 = 底面积 × 高
V
=
Sh
第13篇:圆柱体积教学设计
一、复习导入
1、同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?他们的体积体积的通用公式是什么?用字母怎么表示?
2、回忆一下圆面积的计算公式是如何推导出来的?
3、课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1、学生猜想可以把圆柱转化成什么图形?
2、课件演示:把圆柱体转化成长方体 (1)是怎样拼成的?
(2)观察是不是标准的长方体?
(3)演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3、借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
4、交流展示
(1)小组讨论,交流汇报。(2)生汇报,师结合讲解板书。圆柱的体积=底面积x高
(3)用字母公式怎样表示呢?v、s、h各表示什么?
5、知道哪些条件可以求出圆柱的体积?
6、计算下面圆柱的体积:
(1)底面积24平方厘米,高12厘米(2)底面半径2厘米,高5厘米
三、课题检测
1、判断
(1)圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。(2)圆柱的底面积扩大3倍,体积也扩大3倍。(3)圆柱体的底面直径和高可以相等。
(4)两个圆柱体的底面积相等,体积也一定相等。
(5)一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。
2、联系生活实际解决实际问题。
(1)一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
(2)一个塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆,大棚内的空间大约有多大?
四、全课总结 这节课你有什么收获?
第14篇:圆柱体积教学设计
《圆柱的体积》教学设计
南和县贾宋镇中心学校教师 李立强
一、课前系统部分
(一)、课标分析
《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。
(二)、教材分析
《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
(三)、学生分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(四)、教学目标
知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
(五)、教学重难点:
1、教学重点:掌握圆柱体积的计算公式。
2、教学难点:圆柱体积计算公式的推导。
(六)、教学策略
介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。
(七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。
二、课堂系统部分——教学过程
(一)、创设情境,引起猜想:
1、激发兴趣:圆柱体转化成近似长方体。
课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?
生:体积、高。
(设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)
师:揭示课题:圆柱的体积。
(二)、推导圆柱体积计算公式
师:怎样用我们已有的知识来计算圆柱的体积? 生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?
师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。
我们把这相等的16块分成32块,64块,或更多,那么拼成的立体图形就
学生回答:就越接近于长方体了。
师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)
师:通过观察,你知道了什么?
生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。
(三)、练一练:
1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?
生:完成后小组内交流。
2、师课件出示:判断题
一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
师:出示下面几种解答方案,让学生判断哪些是正确的。①50×2.1=105(立方厘米)
② 2.1米=210厘米,50×210=10500(立方厘米)③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)④ 50平方厘米=0.005平方米,0.005× 2.1=0.0105(立方米)
生:小组讨论,学生汇报并说出理由。
师:点击出现:“√”。
师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。
(四)、两个圆柱体积计算公式的比较。
师课件展示:点击出现圆柱,再点击出现半径r、高h 如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢? 师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。
师:说说这两个体积计算公式之间有什么联系呢? 生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)
小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?
生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。
(五)、拓展训练 练习一:填表
师课件展示,生小组交流完成。练习二:计算圆柱的体积 师课件展示,生小组交流完成。
练习三:师课件展示:根据圆柱的体积公式计算 一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?
生小组交流完成。
(六)、小结
通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。
(七)、板书设计 圆柱的体积
圆柱的体积=底面积×高=Sh=πrh
三、课后系统部分——教学后记
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
第15篇:圆柱体的体积说课稿
《圆柱体的体积》说课稿
沙河市第一私立学校 张东飞
一、说教材
1. 教学内容
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2. 本节课在教材中所处的地位和作用
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3. 教材的重点和难点
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4. 教学目标
(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
(3)通过圆柱体积公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、说教法
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1. 直观演示,操作发现
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2. 巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活
1 动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。
3. 运用迁移,深化提高
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
三、说学法
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法
1. 学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2. 学会利用旧知转化成新知,解决新问题的能力。
3. 学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
四、说教学过程
对本节课的教学,我们设计了以下几个环节。
(一)复习旧知识,为引入新知识作准备
出示长方体、正方体让学生说出各部分名称和体积的计算方法,总结出长方体、正方体可以通用的体积计算公式
(二)导入新课,展示教学目标,学生认读目标
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标
1.设疑并总结判断圆柱体积的大小与那些条件有关?出示图
1、甲乙两个圆柱讨论:
1、甲圆柱与乙圆柱谁的体积大?
2、它们的什么条件是相同的?
3、圆柱的体积大小与什么有关?出示图
2、将一个圆柱截成不相等的两段哪个体积大?让学生观察并得出结论,点击图片证实圆柱的体积大小与底面积和高有关。
2、观察比较建立猜想
长方体正方体的体积可以用底面积乘高来计算,那么圆柱体呢?它和长方体、正方体的体积计算方法是否相同,让学生大胆猜想并操作验证。
3.演示操作,揭示新知。
引导学生观察,沿着圆柱底面把圆柱切开,可以得到大小相等的16快。演示给学生看以后,在让学生动手操作,启发学生说出转化成我们熟悉的形体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?从而推导出圆柱体体积计算的公式,最后让学生说一说圆柱体计算公式的推动过程。并板书:圆柱体的体积=底面积·高
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3. 运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。
在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(四)巩固练习,检验目标
(五)总结全课,深化教学目标
结合板书,引导学生说出本课所学的内容,我们是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来武装自己的头脑,思考问题。
第16篇:体积教学设计
《长方体和正方体的体积计算》教学设计
教学内容:义务教育课程标准实验教科书P40-43
教学目标:
知识与技能:使学生掌握长方体和正方体的体积计算公式,学会计算长方体和正方 体的体积。
过程与方法:通过让学生观察,动手操作,组合作交流的学习方式,经历长方体和 正方体体积的推导过程,培养学生实际操作能力,推理能力及运用知识解决实际问题的能力。
情感与价值观:让学生亲身经历探索知识的过程,激发学生学习的热情,让学生 感悟生活中有数学,数学来源于生活,应用于生活。
教学重难点:
重点:
1、理解长方体和正方体体积公式的推导过程
2、掌握长方体和正方体体积计算公式,并能正确计算长方体和正方体体积
难点:理解长方体和正方体体积计算公式的推导过程
教学分析:长方体和正方体的体积计算是在学生学习长方体和正方体的特征,掌握体积的概念和常用体积单位的基础上教学的,是学生第一次学习立体图形的体积计算。学习长方体和正方体的计算,是学习容积的基础。学习长方体和正方体体积计算具有一定的价值,通过学习一些测量和计算知识可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题。
学情分析:
体积对学生来说是一个新的概念,学生已有了对立体图形的初步认识。本节是对学生空间观念的一次发展。让学生通过小组活动,在具体实践操作与观察对比中,将新知与生活体验联系起来,培养学生应用数学的意识及细心观察的良好习惯 教法学法:标准指出:学生是学习的主体,从这理念出发,教法上,我主要运用操作实验法,启发引导法,小组合作学习等多种方法进行教学;学法上,主要让学生动手操作,观察,猜想,验证等方式,发挥学生的主体性和教师的引导性
教学准备:
教具:多媒体课件,若干个长方体模型,学具:12个体积单位为1立方厘米的小正方体
教学过程: 一 创设情境
1、复习导入
师:同学们,什么是物体的体积?
生:物体所占空间的大小叫做物体的体积
师:常用的体积单位有哪些?你能举例子或者用手势来表示它们的大小吗? 生:立方米、立方分米、立方厘米(手势比划)
师:下面请同学们看大屏幕,说说它们分别计量什么单位,它们有什么不同?(课件出示:长度单位,面积单位,体积单位)
设计意图:通过让学生比划体积单位的大小,进一步树立学生的空间观念,感知体积单位的大小。通过比较计量单位,让学生联系旧知,从而知道计算立体体积要测量哪些,为这节课作铺垫
师;有了长度单位我们可以测量物体的长度,有了面积单位,我们可以测量物体的面积;有了体积单位,我们就可以计算物体的体积。如何来计算这个长方体(出示教具:长方体模型)的体积?请同学们思考一下
小结:可以将这个长方体切成若干个体积单位的小正方体,再看所含有的体积单位有多少个,就是长方体的体积
2、启发思考,引入课题
师:在日常生活中,对于有些物体,如:课本,机器零件等我们能不能也向这样把它切开数数有多少个体积单位呢?那我们要怎样计算它们的体积呢?有没有更快的方法让我们可以很快就知道它们的体积呢?这节课,我们就来学习《长方体和正方体的体积计算》揭示课题并板书,学生齐读课题。
(设计意图:让学生联系生活实际,从实际中发现数学问题,启发学生思考,从而激发学生的学习欲望,调动学生学习的积极主动性,让学生主动学习。)二 探究新知
这环节是本节课的教学重点,我设计了六个环节
1、观察长方体,提出猜想
操作1:教师拿出教具(3个体积单位为1立方厘米的正方体)横着摆成一个长方体,让学生观察
师:摆成的长方体体积是多少?长、宽、高是多少?
操作2:同样由这3个正方体摆成不同形状的长方体,学生观察
师:摆法不同,体积会是多少?什么不变,什么变了?请同学们思考然后回答 生:它的体积不变,长、高发生了变化。操作3:增加1个正方体,同样上面步骤 师:根据以上的观察,你有什么发现?
师:同学们很善于观察,这一发现很重要。长方体的体积可能和长、宽、高有关系(板书:长
宽
高)到底有怎样的关系呢?请同学们动手操作,进一步探究长方体的体积和长、宽、高的关系
2、验证猜想,找出关系
步骤1:
师:请同学们小组合作操作实验,以四人小组为单位,每组拿出自己准备的小正方体摆成不同形状的长方体,并填如下的实验报告单 长方体 小正方体的数量 长方体的体积 长 宽 高 1
步骤2:小组汇报实验结果
师:观察这个表格,你发现什么?
生1:长方体的体积等于小正方体的数量
生2:长方体的体积等于正好等于长×宽×高
师:长方体的体积实际上就表示小正方体的数量,那么长方体的长表示什么?宽、高又分别表示什么?
生:长方体的长表示小正方体一排的个数,长方体的宽就是有几排,高表示有几层。
师再次强调:长方体的长就是小正方体的每排个数,长方体的宽表示每层排数,长方体的高表示层数。
师:长方体所含有多少个体积单位就是长方体的体积。从实验结果观察:我们发现长方体的体积等于正好等于长×宽×高。大家同意吗?
设计意图:小组合作,多给学生提供自主探究平台,让学生动手操作,经历长方体体积公式的推导过程,突破教学难点。
3、验证公式
师:是否对于每个长方体,都有这一关系呢?现在老师随便写个长方体:长为4cm,宽为3cm,高为2cm,请大家计算先根据这个关系计算这个长方体的体积。指名学生汇报计算结果
师:这结果是否就是长方体的体积,我们还需要进一步验证,请同学们摆出这个长方体,再数出它含有多少个体积单位的小正方体 学生拼摆,然后汇报结果
师:长为4cm,表示一排排4个小正方体,宽3cm,表示这样的有3排,高为2cm表示这样的有两层(课件出示摆法)需要24个小正方体,所以长方体的体积为24立方厘米。总结:我们经过猜想,验证,再计算验证,我们得出长方体的体积计算公式=长×宽×高。请大家再把这一发现大声读一遍
师:如果用字母V表示体积,用字母a表示长,b表示宽,h表示高。那么长方体的体积用字母表示还可以表示为V=abh 设计意图:让学生明白猜想出的计算方法是否正确需要进一步验证,培养学生的推理能力及实际操作能力,通过小组合作交流,激发学生探究热情。
4、尝试练习
教学例1:一个长方体,长7cm,宽4cm,高3cm,它的体积是多少? 学生尝试练习,然后教师讲解,规范书写格式
设计意图:让学生学会运用知识解决问题,同时对长、宽、高与体积关系有更进一步的认识,学会运用公式解决问题
5、利用关系,类推公式
师:你能猜想出正方体的体积怎样计算吗?
生:因为正方体是特殊的长方体,所以我想正方体的体积等于棱长×棱长×棱长
师:大家同意吗?同学们都很会思考,但是猜想我们还需要进行检验,请同学们动手用小正方体摆一摆,验证一下
学生动手拼摆,然后汇报。根据学生回答,板书:正方体体积=棱长×棱长×棱长
师:如果用字母V表示正方体体积,用字母a表示棱长,那么正方体体积计算公式还可以表示为V=a*3(板书)
引导学生理解a*3的读法和表示的意义
.6、尝试练习
教学例2:一块正方体的石料,棱长为6dm,这块石料体积是多少立方分米? 学生尝试练习,教师讲解,规范书写格式.(设计意图:让学生根据长方体和正方体的关系,来推断正方体体积计算公式,使学生感受新知识不难理解,实现平稳过渡,培养学生的推理能力,突破难点,突出重点.)
三、巩固练习
1、基本练习
课本P43做一做第一题
2、提高练习
建筑工地要挖一个长50m,宽30m,深50cm的长方体土坑,要挖出多少方土?(1立方米的土、沙、石等均简称“1方”)
3、综合练习
一种砖长25cm,宽12cm,厚5cm,现在把1000块这样的砖垒在一起,它能占多大的空间?
4、如何计算数学课本的体积
设计意图:让学生经过不同层次的练习,提高学生对知识的运用能力,加深对体积公式的理解,感受数学来源于生活,应用于生活。
四 课堂总结
师:通过这节课的学习,你有什么收获?
(设计意图:组织学生交流学习心得,进一步全面回顾,梳理,内化知识,同时培养学生的概括能力。)五 布置作业
1,、一块棱长30cm的正方体冰块,它的体积是多少立方厘米?
2、一根长方体的钢材,它的长是6.5dm,宽是30cm,高是10cm,这根钢材的体积是多少立方厘米?
3、一个正方体的棱长总和是108cm,这个正方体的体积是多少立方厘米?
六 板书设计:
长方体和正方体的体积计算
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
长7cm
宽4cm
高3cm
V=abh
V=a*3
=7×4×3
=6×6×6
=84(立方厘米)
=216(立方厘米)
答:它的体积为84立方厘米。
答:它的体积为216立方厘米。
(设计意图:这样的板书设计,简明扼要,便于学生记忆,突出重点)
第17篇:圆柱体积教学设计方案
篇1:圆柱的体积优秀教案.
教学目标:
1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;
2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
教学重点:
掌握和运用圆柱体积计算公式进行正确计算。
教学难点:
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学准备:
1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
教学过程:
一、复习导入、揭示课题
谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积×高)
1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)
3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。
二、自主探究,精讲点拨
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?
2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下
(1)你准备把圆柱体转化成什么立体图形?
(2)你是怎样转化成这个立体图形的?
(3)转化以后的立体图形和圆柱体之间有什么关系?
3、推导圆柱体积公式。
学生交流,教师动画演示。
(1)把圆柱体转化成长方体。
(2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)
(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)
(5)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)
教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:
圆柱的体积 = 底面积×高
V = S h
三、运用公示,解决问题
教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?
①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?
四、迁移应用,质疑反馈。
1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。
五、全课小结。
这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
六、作业布置:
完成作业纸上的习题
教学反思
本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。
而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
不足之处是:
1、2、留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。
篇2:《圆柱的体积》教学设计
教材版本
《义务教育课程标准实验教科书》(人教版)六年级数学下册。
课程标准摘录
1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。
2、探索某些实物体积的测量方法。
学情与教材分析
“圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。
学习目标
1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。
2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。
3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。
4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。
5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。
学习重点
圆柱的体积计算方法
学习难点
圆柱体积计算公式的推导。
教具、学具准备:
1、师:圆柱体积计算公式推导教具,课件。
2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。
教学设想
本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。
教法、学法
演示法、启发引导;实验、合作探究、尝试练习。
评价方案
1、通过小组合作实验完成活动检测目标
1、4、5的达成。
2、通过提问检测目标
3、4、5的达成。
3、通过评价样题检测目标
1、2、4的达成。
评价样题
1、2、教学过程
一、激活旧知,引出新知
1、计算下面物体的体积
(1)长方体的长20厘米,宽10厘米,高8厘米。
(2)正方体棱6分米
2、回忆一下圆面积的计算公式是如何推导出来的?
[学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]
教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。
[设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]
3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?
[设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]
板书:长方体的体积=底面积×高.
[设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]
圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。
板书:圆柱体所占空间的大小叫做圆柱的体积。
师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)
二、自主合作,探索新知
1.求圆柱体容器中水的体积
出示长方体容器:问,这是什么?
[学情预设:学生可能说出长方体容器。]
问:怎么求长方体容器中水的体积呢?
[学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢?
[学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)
2.橡皮泥圆柱体的体积
(出示橡皮泥做成的圆柱体)
问:这是一个什么样的立体图形?
问:它是用橡皮泥做成的。你能想办法求出它的体积吗?
[学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]
3.常用圆柱的体积.
课件出示圆柱体压路机的滚筒的图片。
问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?
[设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]
小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。
4.探究规律
问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:
课件出示操作讨论提纲:
(1)圆柱体可以转化为什么样的立体图形?
(2)转化后的立体图形体积与圆柱的体积大小是否有变化?
(3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。
学生讨论,教师参与小组讨论、点拨、操作。
问:下面哪个小组来先进行汇报。
各组派代表边汇报边演示。
[学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]
问:谁还有补充?(学生补充讲解)
教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。
师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。
结合课件演示讲解。
师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。
师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)
〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标
1、3、4、5.〕
5、实际应用
(1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?
例
1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。
(2)、完成评价样题
〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标
2、4.〕
三、巩固练习,拓展提高
1、应用公式进行口算:
2、3、[设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标
2、4.]
四、全课总结,共谈收获
通过今天的学习,你有什么收获?
[设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]
五、课外创新,拓展延伸
长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没
篇3:圆柱的体积教学设计及反思
学 科:数学
教学内容:最新人教版六年级数学下册第三章《圆柱的体积》
教材分析:
〈〈圆柱的体积〉〉是数学课程标准中“空间与图形”领域内容的一部分。〈〈圆柱的体积〉〉一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:
教学目标
知识目标:
(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。
(2)通过操作让学生知道知识间的相互转化。
能力目标:
倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。
情感目标:
让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。
教学重点:掌握和运用圆柱体积计算公式。
教学难点:推导圆柱体积计算公式的过程。
教具、学具准备:
采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。教学过程:
一、情景引入
1、出示圆柱形水杯。
(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能用以前学过的方法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
(4)说一说长方体体积的计算公式。
2、出示橡皮泥捏成的圆柱体。
出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?
(有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)
3、创设问题情景。
(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?
刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)
(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)
二、新课教学
设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)学生动手操作探究
1、回顾旧知,帮助迁移
(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以……
(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。
(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)
2、小组合作,探究推导圆柱的体积计算公式。
(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢?(这是学生会有圆的面积想到把圆柱转化为长方体)
老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。
(2)学生以小组为单位操作体验。
老师引导学生探究:
① 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么?
② 如果分割得份数越多,你有什么发现?(电脑演示转化过程)
③ 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。
(3)现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: ①切割后拼成了一个近似于什么的形体?
②圆柱的体积与拼成后的长方体的体积有什么关系?
③这个长方体的底面积等于圆柱的什么?
④长方体的高与圆柱体的高有什么关系?
(二)教师课件演示
1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)
②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)
③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?
让学生再讨论:
第18篇:《圆柱体的表面积》教学设计
《圆柱的表面积》教学设计
教学目标
1、认识圆柱的表面积,理解圆柱表面积的含义.
2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.
3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.
重点:认识圆柱的表面积,理解圆柱表面积的含义.
难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积. 教具准备:
1、圆柱体教具一个
2、学生每人准备圆柱形模型两个;剪刀; 教学过程:
一、复习引入
1、看老师今天带来了个什么?它是个什么样的立体图形?为什么你认为它是圆柱呢,他与圆柱又什么共同的特征呢?(有两个相同的圆,有一个侧面。。)
2、哪现在老师想请一个同学来摸一摸你能摸到几个面?
3、其实刚才同学们所摸到的面,它的面积就是我们圆柱的表面积也就是我们今天要学习的内容(板书:圆柱的表面积)
二、新课教学
一、侧面积的推导:
首先请同学们读一读这节课的学习目标
(一)出示学习目标:
1、理解圆柱的侧面积和表面积的含义。
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、能灵活运用求表面积,侧面积的有关知识解决一些生活中的实际问题。
师:要求表面积,从我们观察的羽毛球桶来说求的是桶的表面积指的是什么呢?(一个侧面和两个底面面积之和)板书:圆柱的表面积=侧面面积+2个底面面积
师:哪两个底面面积是两个什么的面积啊?(两个圆的面积)
哪可是圆柱的侧面是一个什么面?(曲面)我们学过平面图形的面积哪曲面图形的面积怎么计算呢?我们可以把它转化为平面图形来计算吗?
师:把圆柱的侧面展开会是一个什么样的图形呢?这个问题由同学们待会再小组讨论中得出结论.现在每组都有一个圆柱那你们把它剪开,把侧面剪开后你有什么发现,并带着这两个问题进行讨论。小组讨论:
1.圆柱的侧面展开是什么形状
2.展开图中的长与圆柱的底面的周长又什么关系,宽与圆柱的高有什么关系呢?
为了清楚看到他们展开后是什么形状,我们一起来看大屏幕的演示。侧面展开后是个什么形?那么它展开后与圆柱的各部分又什么关系呢?大家接着看。(长刚好是圆柱底面周长 宽刚好是圆柱的高)那么圆柱的侧面积你知道应该怎么计算了吗?(板书:长方形的面积= 长 × 宽
↓ ↓ ↓ 圆柱的侧面积=底面的周长×高)
这个方法是同学们通过自己的努力,将一个曲面转化成平面图形而推导出来的,请同学们用洪亮的声音表扬自己读一读。
(二)圆柱的侧面积应用
师:那么老师想要将这个羽毛球桶贴上一圈商标纸呢应该是求这个圆柱的什么呢?(侧面积)那么侧面积怎么算呢?大家做到本子上 请同学展示
我们知道了什么求什么?底面周长是多少呢?
二、圆柱的表面积推导:
(一)圆柱表面积
师:那么刚才我们求的商标纸的面积是圆柱的表面积吗?(不是)哪要求圆柱的表面积还要怎么办?(加上两个底面的面积)也就是说我们要求圆柱的表面积就是要求圆柱那几部分的面积?
(一)圆柱表面积应用
师:如果老师要将这个羽毛球桶全部贴上包装呢,你认为求的是它的什么呢?(表面积)自己做下。展示(做对的举手)
哪么是不是生活中的所有的圆柱都是要求三个面的面积吗?我们来看下这道题。请同学们读一读题,读出关键词,问的是要求做这样一顶帽子要多少材料多少材料其实是求什么呢?有几个面的面积要算呢?该怎么算呢大家做一做?(出示答案)完了吗?(没有)那我们要用什么法呢?(进一法)
通过刚才的学习我们知道是不是所有的圆柱的表面积都是要求三个面吗?(不是)对要根据实际情况分清楚,要求的是哪几个面比如?(出示图片请同学们回答)
三、练习
四、小结
同学们这节课你有什么收获呢
五、课后作业
六年级数学下册《圆柱的表面积》
教学设计
竹寨小学 聂磊
第19篇:《圆柱体的表面积》教学设计
《圆柱体的表面积》教学设计
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重点:圆柱表面积的计算。
教学难点:圆柱体侧面积计算方法的推导。
教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。
学法指导:采取引导 放手 引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、茶叶桶。
教学过程:
一、检查复习,引入新课。
(复习圆柱体的特征)
师:上节课,我们认识了一个新的几何形体――圆柱。知道它是由平面和曲面围成的立体图形。
问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)
条件:(厘米)r=3 d=4 c=6.28
底面积(平方厘米)28.26 12.56 3.14
(三)教学圆柱体侧面积的计算
1、引导探究圆柱体侧面积的计算方法。
(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?
(2)小组合作探究。(剪圆柱形纸筒)
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米)h=5 h=8 h=10
侧面积(平方厘米)94.2 100.48 62.8
(四)教学求圆柱的表面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72 125.6 69.08
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?
指出:圆柱表面积在实际计算中的意义。
(二)根据要求练习。
1、用铁皮制作圆柱形的通风管10节,每节长8分米,底面周长是3.4分米。至少需要铁皮多少平方分米?(只列式不计算)
2、砌一个圆柱形的水池,底面直径2米,深3米,在池的周围与底面抹上水泥,抹水泥的部分面积是多少平方米?(只列式不计算)
3、用铁皮制一个圆柱形的油桶,底面半径3分米,高12分米。制这个油桶至少要用铁皮多少平方分米?(得数保留整十平方分米)根据学生的计算结果,教学用“进一法”取近似值。
小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。
(三)操作练习。
根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。
练习要求:(多媒体出示)
讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?
测量:借助工具测量出需要的数据(取整厘米数),并做好记录。
计算:根据量得的数据,列出相应的算式并算出结果。
教学反思:
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合。
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
整个教学过程中,教师讲解和学生练习相结合,培养了学生们的合作意识和实践能力.
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《圆柱体体积教学设计(共19篇)》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
