当前位置: 首页 > 其他范文 > 其他范文

二次函数顶点公式,二次函数顶点公式求法

作者:福宝 | 发布时间:2020-11-28 10:35:00 收藏本文 下载本文

二次函数顶点公式大家知道吗?这个公式又是怎么求出来的?想了解的小伙伴看过来,下面由小编为你精心准备了“二次函数顶点公式 二次函数顶点公式的求法”仅供参考,持续关注本站将可以持续获取更多的资讯!

二次函数顶点公式

二次函数顶点公式

二次函数顶点公式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

二次函数顶点式

二次函数顶点公式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。

具体情况

当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;

当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;

当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;

当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。

二次函数顶点公式的求法

二次函数的顶点式方程可以通过配方法求出

假设这个二次函数的普通表达式是:y=ax²+bx+c,(a≠0)进行配方,方法如下:

1、提出系数a,y=a(x²+bx/a)+c;

2、配方,配一次项系数的一半的平方,y=a(x²+bx/a+b²/4a²)+c-b²/4a;

3、化简,y=a[x+b/(2a)]²-(b²-4ac)/(4a);,对称轴是c=-b/(2a),顶点坐标是:(-b/(2a),-(b²-4ac)/(4a));

二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

二次函数知识要点

1、要理解函数的意义。

2、要记住函数的几个表达形式,注意区分。

3、一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)(增减值)等的差异性。

4、联系实际对函数图象的理解。

5、计算时,看图像时切记取值范围。

6、随图象理解数字的变化而变化。

二次函数考点及例题

二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

拓展阅读:二次函数有哪些知识点

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。),则称y为x的二次函数,二次函数表达式的右边通常为二次三项式。

二次函数的三种表达式

一般式:y=ax2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)2+k,[抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2),[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]

二次函数的求解

3、任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k:

抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点上。

二次函数知识点,包括二次函数的定义表达式,以及二次函数的图像以及交点情况的分析和二次函数的性质。

二次函数顶点公式是什么

财务IF函数公式

《二次函数》练习题

Excel函数公式大全

二次函数说课稿(11篇)

本文标题: 二次函数顶点公式,二次函数顶点公式求法
链接地址:https://www.dawendou.com/fanwen/qitafanwen/270336.html

版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《二次函数顶点公式,二次函数顶点公式求法》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。

重点推荐栏目

关于大文斗范文网 | 在线投稿 | 网站声明 | 联系我们 | 网站帮助 | 投诉与建议 | 人才招聘 | 网站大事记
Copyright © 2004-2025 dawendou.com Inc. All Rights Reserved.大文斗范文网 版权所有