自然语言处理岗位职责
第1篇:自然语言处理
自然语言处理(Natural Language Proceing简称NLP)是人工智能和语言学领域的分支学科。在这此领域中探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。
自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。
理论上,NLP是一种很吸引人的人机交互方式。早期的语言处理系统如SHRDLU,当它们处于一个有限的“积木世界”,运用有限的词汇表会话时,工作得相当好。这使得研究员们对此系统相当乐观,然而,当把这个系统拓展到充满了现实世界的含糊与不确定性的环境中时,他们很快丧失了信心。
由于理解(understanding)自然语言,需要关于外在世界的广泛知识以及运用操作这些知识的能力,自然语言认知,同时也被视为一个人工智能完备(AI-complete)的问题。同时,在自然语言处理中,"理解"的定义也变成一个主要的问题。
自然语言处理研究的难点 单词的边界界定
在口语中,词与词之间通常是连贯的,而界定字词边界通常使用的办法是取用能让给定的上下文最为通顺且在文法上无误的一种最佳组合。在书写上,汉语也没有词与词之间的边界。词义的消歧
许多字词不单只有一个意思,因而我们必须选出使句意最为通顺的解释。句法的模糊性 自然语言的文法通常是模棱两可的,针对一个句子通常可能会剖析(Parse)出多棵剖析树(Parse Tree),而我们必须要仰赖语意及前后文的资讯才能在其中选择一棵最为适合的剖析树。有瑕疵的或不规范的输入
例如语音处理时遇到外国口音或地方口音,或者在文本的处理中处理拼写,语法或者光学字符识别(OCR)的错误。语言行为与计划
句子常常并不只是字面上的意思;例如,“你能把盐递过来吗”,一个好的回答应当是把盐递过去;在大多数上下文环境中,“能”将是糟糕的回答,虽说回答“不”或者“太远了我拿不到”也是可以接受的。再者,如果一门课程去年没开设,对于提问“这门课程去年有多少学生没通过?”回答“去年没开这门课”要比回答“没人没通过”好。
第2篇:自然语言处理常用模型方法总结
自然语言处理常用模型使用方法总结
一、N元模型
思想:
如果用变量W代表一个文本中顺序排列的n个词,即W = W1W2…Wn,则统计语言模型的任务是给出任意词序列W 在文本中出现的概率P(W)。利用概率的乘积公式,P(W)可展开为:P(W)= P(w1)P(w2|w1)P(w3| w1 w2)…P(wn|w1 w2…wn-1),不难看出,为了预测词Wn的出现概率,必须已知它前面所有词的出现概率。从计算上来看,这太复杂了。如果任意一个词Wi的出现概率只同它前面的N-1个词有关,问题就可以得到很大的简化。这时的语言模型叫做N元模型(N-gram),即P(W)= P(w1)P(w2|w1)P(w3| w1 w2)…P(wi|wi-N+1…wi-1)…实际使用的通常是N=2 或N=3的二元模型(bi-gram)或三元模型(tri-gram)。以三元模型为例,近似认为任意词Wi的出现概率只同它紧接的前面的两个词有关。重要的是这些概率参数都是可以通过大规模语料库来估值的。比如三元概率有P(wi|wi-2wi-1)≈ count(wi-2 wi-1… wi)/ count(wi-2 wi-1)式中count(…)表示一个特定词序列在整个语料库中出现的累计次数。统计语言模型有点像天气预报的方法。用来估计概率参数的大规模语料库好比是一个地区历年积累起来的气象纪录,而用三元模型来做天气预报,就像是根据前两天的天气情况来预测今天的天气。天气预报当然不可能百分之百正确。这也算是概率统计方法的一个特点吧。(摘自黄昌宁论文《中文信息处理的主流技术是什么?》)
条件: 该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。这些概率可以通过直接从语料中统计N个词同时出现的次数得到。常用的是二元的Bi-Gram和三元的Tri-Gram。
问题:
虽然我们知道元模型中, n越大约束力越强,但由于计算机容量和速度的限制及数据的稀疏,很难进行大n的统计。
二、马尔可夫模型以及隐马尔可夫模型
思想:
马尔可夫模型实际上是个有限状态机,两两状态间有转移概率;隐马尔可夫模型中状态不可见,我们只能看到输出序列,也就是每次状态转移会抛出个观测值;当我们观察到观测序列后,要找到最佳的状态序列。隐马尔科夫模型是一种用参数表示的用于描述随机过程统计特性的概率模型,是一个双重随机过程,由两个部分组成:马尔科夫链和一般随机过程。其中马尔科夫链用来描述状态的转移,用转移概率描述。一般随机过程用来描述状态与观察序列之间的关系,用观察值概率描述。因此,隐马尔可夫模型可以看成是能够随机进行状态转移并输出符号的有限状态自动机,它通过定义观察序列和状态序列的联合概率对随机生成过程进行建模。每一个观察序列可以看成是由一个状态转移序列生成,状态转移过程是依据初始状态概率分布随机选择一个初始状态开始,输出一个观察值后再根据状态转移概率矩阵随机转移到下一状态,直到到达某一预先指定的结束状态为止,在每一个状态将根据输出概率矩阵随机输出一个观察序列的元素。
一个 HMM有 5个组成部分,通常记为一个五元组{S,K, π,A,B},有时简写为一个三元组{π ,A,B},其中:①S是模型的状态集,模型共有 N个状态,记为 S={s1,s2, ⋯,sN};②K是模型中状态输出符号的集合,符号数为 M,符号集记为K={k1,k2,⋯,kM};③是初始状态概率分布,记为 ={ 1, 2,⋯, N},其中 i是状态 Si作为初始状态的概率;④A是状态转移概率矩阵,记为A={aij},1≤i≤N,1≤j≤N。其中 aij是从状态 Si转移到状态 Sj的概率;⑤B是符号输出概率矩阵,记为B={bik},1≤i≤N,1≤k≤M。其中 bik是状态 Si输出 Vk的概率。要用HMM解决实际问题,首先需要解决如下 3个基本问题:①给定一个观察序列 O=O1O2⋯OT和模型{ π,A,B},如何高效率地计算概率P(O|λ),也就是在给定模型的情况下观察序列O的概率;②给定一个观察序列 O=O1O2⋯OT和模型{ π,A,B},如何快速地选择在一定意义下“最优”的状态序列Q=q1q2⋯qT,使得该状态序列“最好地解释”观察序列;③给定一个观察序列 O=O1O2⋯OT,以及可能的模型空间,如何来估计模型参数,也就是说,如何调节模型{π,A,B}的参数,使得 P(O|λ)最大。
问题:
隐马模型中存在两个假设:输出独立性假设和马尔可夫性假设。其中,输出独立性假设要求序列数据严格相互独立才能保证推导的正确性,而事实上大多数序列数据不能被表示 2 成一系列独立事件。
三、最大熵模型
最大熵原理原本是热力学中一个非常重要的原理,后来被广泛应用于自然语言处理方面。其基本原理很简单:对所有的已知事实建模,对未知不做任何假设。也就是建模时选择这样一个统计概率模型,在满足约束的模型中选择熵最大的概率模型。若将词性标注或者其他自然语言处理任务看作一个随机过程,最大熵模型就是从所有符合条件的分布中,选择最均匀的分布,此时熵值最大。
求解最大熵模型,可以采用拉格朗日乘数法,其计算公式为:
pyx1expifi(x,y)Z(x)i
Z(x)expifi(x,y)yi为归一化因子 ,i是对应特征的权重,fi表示其中,一个特征。每个特征对词性选择的影响大小由特征权重学习算法自动得到。
i决定,而这些权值可由GIS或IIS
四、支持向量机
原理:
支持向量机的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况, 通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。
支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来, 通常分为两类情况来讨论,:(1)线性可分;(2)线性不可分。
线性可分情况
在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ·x + b = 0(1)其中,“·”是点积, w 是n 维向量, b 为偏移量。
最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.3 最优超平面可以通过解下面的二次优化问题来获得: 满足约束条件:, i = 1 ,2 ,3 ,......, n.(3)
在特征数目特别大的情况,可以将此二次规划问题转化为其对偶问题:
(4)
(5)(6 满足约束条件:
这里
(7)
是Lagrange 乘子,是最优超平面的法向量,是最优超平面的偏移量,在这类优化问题的求解与分析中, KKT条件将起到很重要的作用,在(7)式中,其解必须满足:
从式(5)可知,那些
(8)
= 0 的样本对分类没有任何作用,只有那些
> 0 的样本才对分类起作用,这些样本称为支持向量,故最终的分类函数为:
根据f(x)的符号来确定X 的归属。线性不可分的情况
(9)对于线性不可分的情况,可以把样本X 映射到一个高维特征空间H,并在此空间中运用原空间的函 数来实现内积运算,这样将非线性问题转换成另一空间的线性问题来获得一个样本的归属.根据泛函的有关理论,只要一种核函数满足Mercer 条件,它就对应某一空间中的内积,因此只要在最优分类面上采用适当的内积函数就可以实现这种线性不可分的分类问题.此时的目标函数为:
0)
(1 4 其分类函数为:(11)
内积核函数 :
目前有三类用的较多的内积核函数:第一类是
(12)
我们所能得到的是p阶多项式分类器,第二类是径向基函数(RBF),也称作高斯核函数:
第三类是Sigmoid函数
特点:
概括地说,支持向量机就是首先通过内积函数定义的非线性变换将输入空间变换到另一个高维空间,在这个空间中求最优分类面。SVM分类函数形式上类似于一个神经网络,输出是中间节点的线性组合,每个中间节点对应一个输入样本与一个支持向量的内积,因此也叫做支持向量网络。
SVM方法的特点:
① 非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;② 对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;③ 支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。
SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。
SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种 “鲁棒”性主要体现在:
5 ①增、删非支持向量样本对模型没有影响;②支持向量样本集具有一定的鲁棒性;③有些成功的应用中,SVM 方法对核的选取不敏感
五、条件随机场
原理:
条件随机场(CRFs)是一种基于统计的序列标记识别模型,由John Lafferty等人在2001年首次提出。它是一种无向图模型,对于指定的节点输入值,它能够计算指定的节点输出值上的条件概率,其训练目标是使得条件概率最大化。线性链是CRFs中常见的特定图结构之一,它由指定的输出节点顺序链接而成。一个线性链与一个有限状态机相对应,可用于解决序列数据的标注问题。在多数情况下,CRFs均指线性的CRFs。用x=(x1,x2,…,xn)表示要进行标注的数据序列,y=(y1,y2,…,yn)表示对应的结果序列。例如对于中文词性标注任务,x可以表示一个中文句子x=(上海,浦东,开发,与,法制,建设,同步),y则表示该句子中每个词的词性序列y=(NR,NR,NN,CC,NN,NN,VV)。
对于(X,Y),C由局部特征向量f和对应的权重向量λ确定。对于输入数据序列x和标注结果序列y,条件随机场C的全局特征表示为
Fy,xfy,x,ii ⑴
其中i遍历输入数据序列的所有位置,f(y,x,i)表示在i位置时各个特征组成的特征向量。于是,CRFs定义的条件概率分布为
p(Y,X)其中 expFY,XZX
⑵
ZXexpFy,xy ⑶
给定一个输入数据序列X,标注的目标就是找出其对应的最可能的标注结果序列了,即
yargmaxpy|xy ⑷
由于Zλ(X)不依赖于y,因此有
6 yargmaxpy|xargmaxFy,xyy ⑸
CRFs模型的参数估计通常采用L—BFGS算法实现,CRFs解码过程,也就是求解未知串标注的过程,需要搜索计算该串上的一个最大联合概率,解码过程采用Viterbi算法来完成。
CRFs具有很强的推理能力,能够充分地利用上下文信息作为特征,还可以任意地添加其他外部特征,使得模型能够获取的信息非常丰富。CRFs通过仅使用一个指数模型作为在给定观测序列条件下整个标记序列的联合概率,使得该模型中不同状态下的不同特征权值可以彼此交替,从而有效地解决了其他非生成有向图模型所产生的标注偏置的问题。这些特点,使得CRFs从理论上讲,非常适合中文词性标注。‘
总结
首先,CRF,HMM(隐马模型)都常用来做序列标注的建模,像词性标注,True casing。但隐马模型一个最大的缺点就是由于其输出独立性假设,导致其不能考虑上下文的特征,限制了特征的选择,而另外一种称为最大熵隐马模型则解决了这一问题,可以任意的选择特征,但由于其在每一节点都要进行归一化,所以只能找到局部的最优值,同时也带来了标记偏见的问题(label bias),即凡是训练语料中未出现的情况全都忽略掉,而条件随机场则很好的解决了这一问题,他并不在每一个节点进行归一化,而是所有特征进行全局归一化,因此可以求得全局的最优值。目前,条件随机场的训练和解码的开源工具还只支持链式的序列,复杂的尚不支持,而且训练时间很长,但效果还可以。最大熵隐马模型的局限性在于其利用训练的局部模型去做全局预测。其最优预测序列只是通过viterbi算法将局部的最大熵模型结合而成的。条件随机场,隐马模型,最大熵隐马模型这三个模型都可以用来做序列标注模型。但是其各自有自身的特点,HMM模型是对转移概率和表现概率直接建模,统计共现概率。而最大熵隐马模型是对转移概率和表现概率建立联合概率,统计时统计的是条件概率。最大熵隐马模型容易陷入局部最优,是因为最大熵隐马模型只在局部做归一化,而CRF模型中,统计了全局概率,在 做归一化时,考虑了数据在全局的分布,而不是仅仅在局部归一化,这样就解决了MEMM中的标记偏置的问题。
第3篇:自然语言处理的应用及发展趋势
自然语言处理的应用及发展趋势
摘要
本文主要阐述了自然语言处理的研究内容,以及对目前相关领域的应用加以讨论。自然语言处理的研究内容主要有四大块[1-2]:语言学方向、数据处理方向、人工智能和认知科学方向、语言工程方向。最后对自然语言处理的未来发展趋势做简单的介绍。
关键词 自然语言处理 应用 发展趋势
一.自然语言处理的研究内容
自然语言处理的范围涉及众多方面,如语音的自动识别与合成,机器翻译,自然语言理解,人机对话,信息检索,文本分类,自动文摘,等等。我们认为,这些部门可以归纳为如下四个大的方向:(1)语言学方向
本方向是把自然语言处理作为语言学的分时来研究,它之研究语言及语言处理与计算相关的方面,而不管其在计算机上的具体实现。这个方向最重要的研究领域是语法形式化理论和数学理论。(2)数据处理方向
是把自然语言处理作为开发语言研究相关程序以及语言数据处理的学科来研究。这一方向早起的研究有属于数据库的建设、各种机器可读的电子词典的开发,近些年来则有大规模的语料库的涌现。(3)人工智能和认知科学方向
在这个方向 中,自然语言处理被作为在计算机上实现自然语言能力的学科来研究,探索自然语言理解的只能机制和认知机制。这一方向的研究与人工智能以及认知科学关系密切。(4)语言工程方向
主要是把自然语言处理作为面向实践的、工程化的语言软件开发来研究,这一方向的研究一般称为“人类语言技术”或者“语言工程”。二.自然语言处理的应用
以上所提及的自然语言处理的四大研究方向基本上涵盖了当今自然语言处理研究的内容,更加细致的说,自然语言处理可以进一步细化为以下13项研究内容,也即为自然语言处理的应用方向,这13个应用方向分别是[3]:口语输入、书面语输入、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。
这13项内容都涉及语言学。这些研究都要对语言进行形式化的描述, 建立合适的算法, 并在计算机上实现这些算法, 因此, 要涉及数学、计算机科学和逻辑学[4]。口语输入、书面语输入、口语输出、信息传输与信息存储都需要电子工程的技术。由自然语言的应用领域更加进一步说明,自然语言处理都是一个多边缘的交叉学科。由于它的对象是语言, 因此, 它基本上是一个语言学科, 但它还涉及众多的学科, 特别是计算机科学和数学。三.自然语言处理研究的发展趋势
21世纪以来, 由于国际互联网的普及, 自然语言的计算机处理成为了从互联网上获取知识的重要手段, 生活在信息网络时代的现代人, 几乎都要与互联网打交道, 都要或多或少地使用自然语言处理的研究成果来获取或挖掘在广阔无边的互联网上的各种知识和信息, 因此, 世界各国都非常重视有关的研究, 投入了大量的人力、物力和财力[5]。
自然语言处理研究的历史虽不很长,但就目前已有的成果足以显示它的重要性和应用前景。在美、英、日、法等发达国家,自然语言处理如今不仅作为人工智能的核心课题来研究.而且也作为新一代计算机的核心课题来研究。从知识产业的角度来看.自然语言处理的软件也占重要地位,专家系统,数据库、知识库.计算机辅助设计系统(CAD)、计算机辅助教学系统(CAl)、计算机辅助决策系统,办公室自动化管理系统、智能机器人等,无一不需要用自然语言做人一机界面。从长远看.具有篇章理解能力的自然语言理解系统可用于机器自动翻译、情报检索、自动标引,自动文摘.自动写故事小说等领域,具有广阔的应用领域和令人鼓舞的应用前景。
当前国外自然语言处理研究有三个显著的特点[6]:第一, 随着语料库建设和语料库语言学的崛起, 大规模真实文本的处理成为自然语言处理的主要战略目标。第二, 自然语言处理中越来越多地使用机器自动学习的方法来获取语言知识。第三, 自然语言处理中越来越多地使用统计数学方法来分析语言数据。目前,我国的自然语言处理研究虽然已经取得不少成绩, 但是与国际水平相比, 差距还很大。我国的自然语言处理研究, 无论在理论上还是在应用系统的开发上, 基本上还没有重大的创新与值得称道的突破。我们的研究基本上还是跟踪性的研究, 很少有创造性的研究, 当然更谈不上具有原创思想的研究了。因此, 我们不能夜郎自大, 不能坐井观天,我们只有努力学习国外的先进成果, 赶上并超过国际先进水平, 使我国的自然语言处理在国际先进行列中占有一席之地,掌握国际先进的成果与技术用于国家和社会的进一步发展。
参考文献: [1] 李堂秋,《自然语言处理》讲义,厦门大学计算机科学系.[2] 辛日华.计算机自然语言处理.呼伦贝尔学院学报,2003,11(1)[3] 白硕,《计算语言学》讲义,中国科学院计算技术研究所.[4] 詹卫东,《计算语言学概论》讲义,北京大学中文系.[5] 冯志伟.自然语言处理的学科地位.解放军外国语学院学报,2005,28(3)[6] 冯志伟.自然语言处理的历史与现状,2008.
第4篇:废气处理岗位职责
Xxxx有限公司 废气处理岗位职责
1废气处理岗位必须严格按照工艺岗位要求,确保各个车间包括烘房尾气得到正常处理。
2.正确操作和维护,确保风机的正常运行。
3.定时检查风机的油位,各个喷淋塔的液位,酸碱度。
4.定期检查喷淋塔喷头的喷水是否正常,如有不正常情况立即与污水站管理人员联系。
5.服从污水站指挥,坚守工作岗位,遵守劳动纪律,严格执行各项规章制度,确保尾气处理塔的各项指标要求。
6.熟悉业务理论(工艺流程、开停机顺序、环保设备、安全生产知识、设备性能),提高操作水平。
7.认真做好开停机的全面检查,随时掌握设备的运行情况,对设备故障做到判断准确、发现问题及时处理,解决不了的问题及时汇报设备负责人和主管领导。
8.精心维护和保养设备,努力提高设备的完好率,使每台设备发挥最好的潜能。
9.设备运行时必须不间断对设备进行巡检做到“一听、二看、三摸、四嗅”,及时了解掌握设备的运行状况和更换处理药剂的情况。
10..搞好设备和环境卫生,认真履行交接班制度,记录好 尾气岗位运行记录。
2016年11月16日
污水处理站
版权声明:
1.大文斗范文网的资料来自互联网以及用户的投稿,用于非商业性学习目的免费阅览。
2.《自然语言处理岗位职责》一文的著作权归原作者所有,仅供学习参考,转载或引用时请保留版权信息。
3.如果本网所转载内容不慎侵犯了您的权益,请联系我们,我们将会及时删除。
